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Deferred Surgeries due to COVID-19

e |2-week cancellation rates of surgery for benign disease

(March to May 2020)
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Source: COVIDSurg Collaborative (2020) Elective surgery cancellations due to the COVID-19 pandemic:
global predictive modeling to inform surgical recovery plans. British Journal of Surgery, 107(11): 1440-14409.
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New Covid wave could worsen NHS
surgery backlog, experts warn

Relaxation of rules and sharp rise in B.1.617.2 variant cause
concern, as millions wait for hospital treatment

There has been a huge increase in the number of people waiting
more than a year for NHS care since the start of the Covid
pandemic

Number of people waiting over 52 weeks for NHS treatment

304,044

185-fold increase ————p
year on year

1,643

Source: D. Campbell. ‘A truly frightening backlog’: ex-NHS chief warns of delays in
vital care. The Guardian, April 2, 2021 / N. Davis and D. Campbell. New Covid wave
could worsen NHS surgery backlog, experts warn. The Guardian, May 20, 2021.
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Cost of Deferred Elective Surgeries

* Potentially, worst health care outcomes for patients due to delayed treatment

* |Increased financial costs for hospitals and insurers due to worsened diseases

e Significant financial loss for hospitals

* Average monthly loss of revenue of the U.S. hospitals is $50.7 billion for
March-June 2020 (Meredith et al. 2020).

* Elective surgeries account for 43% of gross revenue of the U.S. hospitals
(Tonna et al. 2020).

Source: Meredith, High, and Freischlag (2020) Preserving elective surgeries in the COVID-19 pandemic and the future. JAMA 324(17):1725-1726. Tonna, Hanson, Cohan, McCrum, Horns, Brooke, Das, Kelly,
Campbell, and Hotaling (2020) Balancing revenue generation with capacity generation: case distribution, financial impact and hospital capacity changes from cancelling or resuming elective surgeries in the US
during COVID-19. BMC Health Services Research 20(1):1-7.
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Capacity Management for Deferred Surgeries

* Expanding surgical capacity of hospitals will expedite patient treatment
- Improved health outcomes

- Lower treatment costs

 Current policies are rather adhoc

- No expansion, or expanding capacities by pre-determined factors.

* The continuously changing patient demand requires the capacity has to adjust dynamically.

= Silver Bullet: An optimization-based methodology to dynamically manage surgical
capacity for deferred surgeries, while balancing the profit with service requirements.
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Problem Set-up

Expansion Decisions Surgeries and Deferrals
o Cp=(Cgy,-,Cg) e u, = (ut(_L), oo, ut(t)) : deferred surgeries.
¢« C=(C, . C) . ut(f) : surgeries scheduled at 7 and

carried out at 1.

¢ X, = (xt(_L), ---,xt(t)) : performed surgeries.
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Problem Set-up

Expansion Decisions Surgeries and Deferrals Uncertainty Sources
o Cp=(Cpy,,Cp) o u, =@ ™, -, u") : deferred surgeries. * d,:demand

o — (_L) .o (t) .
¢« C=(C,,0) . ut(f) : surgeries scheduled at 7 and W(O) = (W, e W)

departing patients.
¢ & =1(0,4d)

carried out at 1.

¢ X, = (xt(_L), ---,xt(t)) : performed surgeries.

Kartikey Sharma (ZIB) 51729



Problem Set-up

Expansion Decisions Surgeries and Deferrals Uncertainty Sources
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Problem Set-up

Expansion Decisions
o Cp=(Cyy, -, Cpy)
e C=(Cy,,C)

Surgeries and Deferrals

e u = (ut(_L), ree, ut(t)) : deferred surgeries.

o u'9 :surgeries scheduled at 7 and

A
carried out at 1.

¢ X, = (xt(_L), ---,xt(t)) : performed surgeries.

State dynamics and constraints:
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Problem Set-up

Expansion Decisions Surgeries and Deferrals Uncertainty Sources

o Cp=(Cpy,,Cp) o u, =@ ™, -, u") : deferred surgeries. * d,:demand
° Wt(et) — (Wt(_L)a ", Wt(t)) :
departing patients.

* ¢ =1(0,d)
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Expansion Decisions Surgeries and Deferrals Uncertainty Sources

o Cp=(Cpy,,Cp) o u, =@ ™, -, u") : deferred surgeries. * d,:demand
° Wt(et) — (Wt(_L)a ", Wt(t)) :
departing patients.

* ¢ =1(0,d)
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carried out at 1.

¢ X, = (xt(_L), ---,xt(t)) : performed surgeries.
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Dynamic Programming Formulation

e Costattimet:

H:;(Cg.t, Ct, Us, Xt, Wt) 1= bB,t(Ct + Cgt) + b Gy

[ { "
- Ct ZXI‘(T) + ZPT—T(UZST) — Xt(T) — Wt(T)) —+ Z ft—TWt(T)
T=—L T=—L T=—L
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Dynamic Programming Formulation
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Dynamic Programming Formulation

 Costattime7: by , - Base expansion cost b, : Expedited expansion cost

H:;(Cg.t, Ct, Us, Xt, Wt) 1= bB,t(Ct + Cgt) + b Gy

[ { "
- Ct th(T) + ZPT—T(UF-) — Xt(T) — Wt(T)) —+ Z ft—TWt(T)
T=—L T=—L T=—L

C, : Surgery cost
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Dynamic Programming Formulation

 Costattime7: by , - Base expansion cost b, : Expedited expansion cost

H:;(Cg.t, Ct, Us, Xt, Wt) 1= bB,t(Ct + Cgt) + b Gy

[ { f
- Ct ZXZ‘(T) + Zpt—T(UZST) — Xt(T) — Wt(T)) —+ Z ft—TWt(T)
T=—L T=—L T=—L

C, : Surgery cost p,_. - Deferral cost f,_. : Departure cost

* Dynamic programming (DP) model:

min Eq | minEyw, |Hi(:) +min Eg, | minEy, |[Ho(-) + -+ minEg, | minEyw.,. | Hr (-
Cs.C 1 X Wi ( ) C 2 Xo Wo ( ) Cr T X7 Wr i ( )_
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Dynamic Programming Formulation

* Dynamic programming (DP) model:

min

_4‘|
Jd‘l

CBac‘l
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min Eg | min
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e Challenges
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Dynamic Programming Formulation

* Dynamic programming (DP) model:

min Eg | min
CB,C1 i X1
e Challenges

e |Lack of distributional information
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Dynamic Programming Formulation

* Dynamic programming (DP) model:

min Eg | min
CB,C1 i X1
e Challenges

e |Lack of distributional information

_H1(-) + min

Co

e Model difficult to solve
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Demand and Departure Uncertainty

 Departing patients w, depends on u, and X,

w. < u, — X, almost surely.

Eojin Han (SMU) 7 /28



Demand and Departure Uncertainty

 Departing patients w, depends on u, and X,

w. < u, — X, almost surely.

* Introduce departure uncertainty 0, € [0,1] such that w, = (1 — 0)(u, — x,).

= (). is an uncertain proportion of non-departing patients at time .

Eojin Han (SMU) 7 /28



Demand and Departure Uncertainty

 Departing patients w, depends on u, and X,

w. < u, — X, almost surely.

* Introduce departure uncertainty 0, € [0,1] such that w, = (1 — 0)(u, — x,).

= (). is an uncertain proportion of non-departing patients at time .

 Now u, is described via multilinear functions of ¢, ,d, ,and X, as

—1 —1 —1
=1 [l e]d- 2 (H)Xf) Ve=—L -1Vt ET].

k=max(7,1) t'=max(z,1) \ k=t

Eojin Han (SMU) 7 /28



Demand and Departure Uncertainty

 Departing patients w, depends on u, and X,

w. < u, — X, almost surely.

* Introduce departure uncertainty 0, € [0,1] such that w, = (1 — 0)(u, — x,).

= (). is an uncertain proportion of non-departing patients at time .

 Now u, is described via multilinear functions of ¢, ,d, ,and X, as

—1 —1 —1
=1 [l e]d- 2 (H)Xf) Ve=—L -1Vt ET].

k=max(7,1) t'=max(z,1) \ k=t

* We take a (distributionally) robust optimization approach to address this multilinearity.
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Outline of Methods

e Robust Optimization (RO) Uy (ur,XT) =
- Uncertainties are described via polyhedral and box sets. {wi | we = pe(ug — ), peEU,}
- Decisions are made to minimize the worst-case cost. dclU

- Introduce the tree of uncertainty products and leverage
McCormick relaxations to handle multilinear uncertainty.
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e Distributionally Robust Optimization (DRO) e My st
- Uncertainties are described via unknown distributions, which are P (gt c [gt | Et]) — 1
described via sets.
- Decisions are made to minimize the worst-case expected cost. ki [\ft - gt\] < Ag,
- Leverage the mean-absolute deviation (MAD) based ambiguity sets Er¢] =&

* Numerical Experiments
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Outline of Methods

e Robust Optimization (RO) Uy (ur,XT) =
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Overall Problem

* Opverall problem:

min max G (Ce(Orr—11, dii—11), Xin (01511, diny), O111, O
ct(-),xt(-)emee,dmeug[;] t (Ce(Ore—11, die—11), X[ (011 Ay Oy )

[ t—1 t—1
S.1. Z (H (9/() x(,T)(H[t/_”, d[t’]) < H Ok | d- \V/H[T] € 0, d[T] cU, T € [—L ; t], [ € [T]

t’=max(7,1) \k=t’ k=max(7,1)

> X7 O-1), dy) < G+ Cot + CelOp—1) die—1y) VO € ©, 0y €U, t € [T]

T€[—L:t]
X¢(O_17, Q) € R Vo) € ©,dr €U, t € [T]
(Cs, C1,Co(01,01),--+,Cr(O7—11, A[7—17)) €C Vo € ©,dm €U,

Whel’e Gt(Ct, X[t], 9[1‘]7 d[t]) =

t t I t—1 t t—1 ]
bB,t(ét + CB,t) + by Cy + Z CtXt(T) + Z fi ( H (9/() ad. — Z (H (9/() X(,T)

T=—L T=—L k=max(7,1) t’=max(7,1) \k=t'

T——L k:max(T,1) l":max(T,1) k=t

-+ Z (pt—7 — ) ( H t9k) d, —Z (H Qk) X(/T) :
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Overall Problem

e Overall problem:/ Can be

max Z Gt (Ct(e[t_ﬂ, d[t_1]), X[t]((g[t—ﬂa d[t])7 (9[1‘]7 d[t])

min

Ct(-),Xt(-) Q[T]Ge,d[r] cu

S.1.

~ (stochastic), or sup

— (distributionally robust)

te[T]

K=t’

t’=max(7,1)

TE[—L:1]
Xt (017, djy) € RIFE

(Cpg, C1, Ca(64,04), - -,
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Tree of Uncertainty Products

* The problem consists of uncertain terms of the form

Y Mg+ D> ¢ &= veeu
ke K| ne|N]|

1E€ESn

e This constraint involves sums of multilinear terms.
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Tree of Uncertainty Products

* The problem consists of uncertain terms of the form

Y Mg+ D> ¢ &= veeu
ke K| ne|N]|

1E€ESn

e This constraint involves sums of multilinear terms.

* We show that if
- the multilinear products are in the form of leaves of tree, and
- No two leaves without common ancestor share that uncertain component

then the constraint is equivalent to its McCormick relaxation

Kartikey Sharma (ZIB) 11/29
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Tree of Uncertainty Products: Example

zY = (0,0,0,0,0)
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Tree of Uncertainty Products
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Tractable Approximations

Step |. Employ decision rules, e.g, Linear decision rules
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Step 2. Substitute to the overall problem and identify all multilinear functions of uncertainties.

Step 3. Form a tree of uncertainty products and approximate with lifted uncertainty sets.
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Step 2. Substitute to the overall problem and identify all multilinear functions of uncertainties.

Step 3. Form a tree of uncertainty products and approximate with lifted uncertainty sets.

Proposition
Under linear decision rules, the multistage problem is approximated as a static robust

optimization problem with O(T?) uncertain parameters and decision variables.

Generalizable to multilinear decision rules!
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Outline of DRO Approach

e Uncertainties are described via unknown distributions, which are described via
ambiguity sets.

* Decisions are made to minimize the worst-case expected cost.

e (QOverall formulation:

min sup Eq |min sup Ew, [Hi(-) + min supEg, |[min supEw, | H2(:) + -+ + min supEy, [min sup Ew,
Ce:C1 Fy. X1 Fw, C2 Fy, X2 Fu, CT Fy, | XT Fug
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Mean-MAD Ambiguity Sets

Definition

For the set of non-negative Borel measurable functions .Z , (R*"), 49> Aq = 0,

0<0 <6’ <0 <1, and 0 < d <d < d, , mean-MAD ambiguity set F

Pr (6. € [6,,6:]) =1, Ep [6,] =6, Er
F: FGM-I—(RZT) IP)F (dtG [dt,at])zl, ‘EF [dt]:C/Z\t, ‘EF

{0/, dir} are mutually independent

¢ 0,0, d, d. : lower and upper support of &, and d..

_t’ —

N\ Vo

0
dy

is defined as

—0l| <xn, WVie[T

_ a4l <A Vte[T]

e 0, d, :expectation of d, and d.

o Ay, 44 :mean-absolute deviation bound of 6, and d..

Eojin Han (SMU) 18/28

"TAll of them can be easily

estimated from (small) data!
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Fy ={Fe M (R) |P(Y € [y,7]) =1, E[Y] =50, E[]Y
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* The supremum of a convex function over this set is a 3 point distribution (Ben-Tal &
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Mean-MAD Ambiguity Sets

Fy = {F c M_(R) \ P(Y € [y,7]) =1, E[Y] = o, E[|Y —yol|] < X} )

* The supremum of a convex function over this set is a 3 point distribution (Ben-Tal &
Hochman 1972).

* We extend existing results to the MAD set with inequality.

* This allows us to reformulate the DRO problem as a Stochastic Optimization problem.

- We solve this problem using Sample Average Approximation
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Mean-MAD Ambiguity Sets

Fy ={F e My ([R) |P(Y € [y,7]) =1, E[Y]| =yo, E[[Y —uol] <A},

Multistage DRO ————— Multistage SO
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Reformulation

Theorem

With the mean-MAD ambiguity set &, the multistage DRO problem is reformulated as a
stochastic optimization problem with three-points discrete distributions for each uncertain parameter.
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Reformulation

Theorem
With the mean-MAD ambiguity set &, the multistage DRO problem is reformulated as a

stochastic optimization problem with three-points discrete distributions for each uncertain parameter.

min Ky g+ |min Ey, g+ |Hi(:) +min Eg g+ [min Eyw,wgx |Ho(-)+---+minEqg g+ [min Ey. g [HT : }
CB,C-I 1 dy X1 1 W ( ) 02 2 do X5 2 Wo ( ) CT T dT XT T W ( )
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Reformulation

Theorem

With the mean-MAD ambiguity set &, the multistage DRO problem is reformulated as a
stochastic optimization problem with three-points discrete distributions for each uncertain parameter.

min Ky g+ |min Ey, g+ |Hi(:) +min Eg g+ [min Eyw,wgx |Ho(-)+---+minEqg g+ [min Ey. g [HT : }
CB,C-I 1 dy X1 1 W+ ( ) CZ 2 do X5 2 Wo ( ) CT T dT XT T W ( )

* Under mean and MAD constraints, the worst-case probability distribution is always fixed,
supported over lower and upper bounds, and their means.

* Insight: There exists a class of stochastic optimization problems whose solutions are
distributionally robust!

Eojin Han (SMU) 21/28




Outline of Methods

e Robust Optimization (RO) Uy (ur,xT) =
- Uncertainties are described via polyhedral and box sets. {wi | we = ps(uy —a¢), peU,}
- Decisions are made to minimize the worst-case cost. dclU

- Introduce the tree of uncertainty products and leverage
McCormick relaxations to handle multilinear uncertainty.

e Distributionally Robust Optimization (DRO) e My s.t.
- Uncertainties are described via unknown distributions, which are P (gt c[g, Et]) — 1
described via sets.
- Decisions are made to minimize the worst-case expected cost. Er [\ft - gt@ < Ag,
- Leverage the mean-absolute deviation (MAD) based ambiguity sets Ex[6] = &

* Numerical Experiments
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Case Study of Hernia Surgery

* Hernia dataset contains all claim records of patients in network from 2017 to 2020.
- Dates of office visit, surgery (if performed)
- All payment information with dates for all medical procedures and drug transaction history

 Cost parameters and demand/departure uncertainty information is estimated from the hernia
dataset.

* Our analysis estimates current backlog as 4 months of average (pre-pandemic) monthly demand.
* Four methods are implemented and compared:

- RO: robust optimization-based method

- DRO: distributionally robust optimization-based method

- Det60: temporally increase capacity by at most 60% (for ~7 months)

- Detl00: temporally increase capacity by at most 100% (for ~5 months)
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Performance Improvement

Departure Level DRO RO Det60 Det100
Mean CVaR90 Mean CVaR90 Mean CVaR90 Mean CVaR90
More Departure -3969 -2882 -3833 -2927 -2740 -1871 -3608 2711
P (10.0)  (8.31) | (6.25)  (7.97) | (-24.1)  (-31.0) | (0.0) (0.0)
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e Both RO and DRO policies achieve better objective values (costs) than deterministic policies.
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Performance Improvement

DRO RO Det60 Det100
Mean CVaR90 Mean CVaR90 Mean CVaR90 Mean CVaR90

-3969 -2882 -3833 -2927 -2740 -1871 -3608 2711
(10.0) (6.31) (6.29) (7.97) (-24.1) (-31.0) (0.0) (0.0)

5078  -4284 | -4906  -4306 | -4078  -3446 | -4745  -4061
(7.02)  (5.49) | (3.39)  (6.03) | (-14.1) (-15.1) | (0.0) (0.0)

Departure Level

More Departure

Less Departure

e Both RO and DRO policies achieve better objective values (costs) than deterministic policies.

e DRO performs better in expectation (mean), but RO performs better at higher risk (CVaR90).
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Structure of Expansion Policies
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Structure of Expansion Policies

a) More Departure
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e Both RO and DRO keep maximum capacity for the first three months (surge period).
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a) More Departure
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e Both RO and DRO keep maximum capacity for the first three months (surge period).
e DRO keeps higher capacity than RO after the surge period.
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Structure of Expansion Policies

a) More Departure
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e Both RO and DRO keep maximum capacity for the first three months (surge period).

e DRO keeps higher capacity than RO after the surge period.
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Deferred and Departed Patients
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Deferred and Departed Patients

Deferred Patients over Time
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Deferred and Departed Patients

Deferred Patients over Time
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e Both RO and DRO policies achieve less numbers of deferrals and departures than deterministic
policies.
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Deferred and Departed Patients

Deferred Patients over Time Cumulative Departure over Time
I I I I I 140 I I I
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e Both RO and DRO policies achieve less numbers of deferrals and departures than deterministic
policies.
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Comparison of Policies

Lower demand (Mean 94)  Nominal demand (Mean 100)  Higher demand (Mean 106)

Static ~ Hybrid Dynamic  Static  Hybrid Dynamic  Static  Hybrid Dynamic

RO 7.17%  8.91% 11.15% 5.61%  6.25% 9.90% 6.31% 7.89% 10.29%
DRO 2.61% 4.11% 4.36% 10.29%  10.00% 13.31% 11.12% 10.65%  13.10%
Det60 -23.8% -24.2%  -24.9% -25.6%  -24.1% -23.3% 274%  -26.6% -26.2%

* Both RO and DRO policies improve over the deterministic policies

* RO is robust to higher and lower demand scenarios, but DRO is only guaranteed
to protect against high demand settings.
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Analysis of Outcomes

 Objective improvement (in percentage) over deterministic policies for different costs

3 3 3
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Expansion Cost Ratio Expansion Cost Ratio Expansion Cost Ratio
(a) Heatmap of DRO (b) Heatmap of RO (c) Heatmap of RO-DRO

e RO becomes more preferable than DRO when a decision-maker faces both higher
expansion and departure costs.
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Conclusions

e Dynamic expansion of surgical capacity is necessary to manage a large number of deferred surgeries.
* We develop two optimization methods, based on RO and DRO.
* We introduce the notion of tree of uncertainty products to make RO models tractable.

* Proposed methods significantly improve objectives (5~10%) over deterministic policies in the hernia
case study.
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