Optimization under Decision Dependent Uncertainty

Kartikey Sharma, Omid Nohadani

Industrial Engineering and Management Sciences, Northwestern University

Abstract

In many applications, uncertainties are affected by decisions. These dependencies are not modeled by current frameworks.

- We show RO problems with decision-dependent uncertainties (DDU) are NP-complete.
- We introduce a new class of uncertainty sets with decisiondependent sizes and with good reformulations.
- Application: Shortest Path with uncertain arc lengths.

Introduction

In the graph the length of any arc e is uncertain $d_e = \overline{d}_e(1 + \xi_e)$. The uncertainty ξ_e is in the set $\mathcal{U}(\mathbf{x}) = \{ \boldsymbol{\xi} \mid 0 \le \xi_e \le 1 - 0.8x_e \}$ where the binary decision x_e determines whether to reduce the maximum possible uncertainty. The objective is to find the shortest path from A to B.

Shortest Path	Path	Nominal	Worstcase
Nominal	A-C-B	95	127
Robust	A-E-F-G-H-B	97.4	110.15
DDU	A-E-C-B	95.3	108.1

Decision-dependent sets can mitigate the conservatism of worst case scenarios.

Complexity

RO-DDU :

$$\min_{\mathbf{x},\mathbf{y}} \mathbf{c}^{\top}\mathbf{x} + \mathbf{f}^{\top}\mathbf{y}$$

s.t. $\mathbf{a}_{i}^{\top}\mathbf{x} + \boldsymbol{\xi}_{i}^{\top}\mathbf{y} \le b_{i} \quad \forall \boldsymbol{\xi}_{i} \in \mathcal{U}_{i}^{P}(\mathbf{x}) \subseteq \mathbb{R}^{n} \quad \forall i$

Uncertainty set : $\mathcal{U}^{P}(\mathbf{x}) = \{ \boldsymbol{\xi} \mid \mathbf{D}\boldsymbol{\xi} \leq \mathbf{d} + \boldsymbol{\Delta}\mathbf{x} \}$

Theorem 1. The robust linear problem (RO-DDU) with uncertainty set \mathcal{U}^P is NP-complete.

Structured Uncertainty Sets

Note: $\mathcal{U}^{\Pi}(\mathbf{x})$ is an intersection of a polyhedron and a box. The size of the box changes with the decision \mathbf{x} .

Worst case scenario for constraint (LC)

 $h(\mathbf{x})$ ma

Using Theorem 2, the constraint (LC) can be expressed as

The following set captures common models of uncertainty and incorporates decision dependence.

$\overline{\Pi}$ -Uncertainty:

$$\mathcal{U}^{\Pi}(\mathbf{x}) = \{ \boldsymbol{\xi} \mid \mathbf{D}\boldsymbol{\xi} \leq \mathbf{d}, \ \boldsymbol{\xi} \leq \mathbf{v} + \mathbf{W}(\mathbf{e} - \mathbf{x}), \ \boldsymbol{\xi} \geq \mathbf{0} \}$$

Goal: We reformulate the constraint

$$\mathbf{y}^{\mathsf{T}}\boldsymbol{\xi} \le b \ \forall \boldsymbol{\xi} \in \mathcal{U}^{\mathbf{\Pi}}(\mathbf{x}) \tag{LC}$$

$$\begin{split} \bar{\mathbf{x}}, \mathbf{y}) &= & \bar{\mathbf{h}}(\mathbf{x}, \mathbf{y}) = \\ & \mathbf{x} \ \mathbf{y}^{\top} \boldsymbol{\xi} \\ \text{i.t.} \ \mathbf{D} \boldsymbol{\xi} &\leq \mathbf{d} \\ & \boldsymbol{\xi} &\leq \mathbf{v} + \mathbf{W}(\mathbf{e} - \mathbf{x}) \\ & \boldsymbol{\xi} &\geq \mathbf{0} \end{split} \qquad \begin{aligned} \bar{\mathbf{h}}(\mathbf{x}, \mathbf{y}) &= & \\ & \max \ (\mathbf{y} - \overline{\mathbf{\Pi}} \mathbf{x})^{\top} \boldsymbol{\xi} + \mathbf{y}^{\top} \boldsymbol{\zeta} \\ & \text{s.t.} \ \mathbf{D} \boldsymbol{\xi} + \mathbf{D} \boldsymbol{\zeta} &\leq \mathbf{d} \\ & \boldsymbol{\xi} &\leq \mathbf{W} \mathbf{e} \\ & \boldsymbol{\zeta} &\leq \mathbf{v} \\ & \boldsymbol{\xi}, \boldsymbol{\zeta} &\geq \mathbf{0} \end{aligned}$$

Theorem 2. For a binary \mathbf{x} , if the set $\mathcal{U}^{\Pi}(\mathbf{x})$ is nonempty and $\mathbf{v}, \mathbf{W} \ge 0$, then for all \mathbf{y} :

$$h(\mathbf{x}, \mathbf{y}) = \overline{h}(\mathbf{x}, \mathbf{y}).$$

$$\begin{aligned} \mathbf{t}^{\top} \mathbf{d} + \mathbf{r}^{\top} \mathbf{W} \mathbf{e} + \mathbf{s}^{\top} \mathbf{v} &\leq b \\ \mathbf{s}^{\top} + \mathbf{t}^{\top} \mathbf{D} &\geq \mathbf{y}^{\top} \\ \mathbf{r}^{\top} + \mathbf{t}^{\top} \mathbf{D} &\geq \mathbf{y}^{\top} - \mathbf{x}^{\top} \overline{\mathbf{\Pi}} \\ \mathbf{r}, \mathbf{s}, \mathbf{t} &\geq \mathbf{0} \end{aligned}$$

 \rightarrow This has fewer constraints than the Big-M reformulation.

Application: Shortest Path

 $\min_{\mathbf{x},\mathbf{y}} \max_{\boldsymbol{\xi} \in \mathcal{U}^{SP}(\mathbf{x})} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij} + \sum_{(i,j) \in \mathcal{A}} d_{ij}(\boldsymbol{\xi}) y_{ij}$ (SP) s.t. $\mathbf{x} \in X \subseteq \{0,1\}^{|\mathcal{A}|}, \mathbf{y} \in Y$

The length of the arc (i, j) is uncertain $d_{ij}(\boldsymbol{\xi}) = \bar{d}_{ij}(1 + \xi_{ij})$. x_{ij} : Whether to reduce the uncertainty in the arc (i, j). y_{ij} : Whether arc (i, j) is in the shortest path.

Uncertainty Set:

$$\mathcal{U}^{SP}(\mathbf{x}) = \left\{ \boldsymbol{\xi} \mid \sum_{(i,j)\in\mathcal{A}} \xi_{ij} \leq \Gamma, \ \xi_{ij} \leq 1 - \gamma_{ij} x_{ij}, \ \xi_{ij} \geq 0 \ \forall (i,j) \right\}$$

Numerical Experiment

Numerical Setup: $c = 1.0, \ \gamma = 0.2, \Gamma = 2$

Conclusion

We present an alternative model to reduce the conservatism of robust optimization problems which improves the worst case scenario. We prove the difficulty of decision-dependent problems and introduce a new uncertainty set to capture the decision-dependent behavior while still ensuring good reformulation capabilities.

randomly generated graphs, 100

 \rightarrow The $\overline{\Pi}$ reformulation scales better than Big-M. \rightarrow DDU objective value improves over RO and SO for c < 2.