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Abstract
In many applications, uncertainties are affected by decisions.
These dependencies are not modeled by current frameworks.
•We show RO problems with decision-dependent uncertainties

(DDU) are NP-complete.

•We introduce a new class of uncertainty sets with decision-
dependent sizes and with good reformulations.

• Application: Shortest Path with uncertain arc lengths.

Introduction

In the graph the length of any arc e is uncertain de = d̄e(1 + ξe).
The uncertainty ξe is in the set U(x) = {ξ | 0 ≤ ξe ≤ 1− 0.8xe}
where the binary decision xe determines whether to reduce
the maximum possible uncertainty. The objective is to find the
shortest path from A to B.
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Shortest Path Path Nominal Worstcase
Nominal A−C−B 95 127
Robust A−E−F−G−H−B 97.4 110.15
DDU A−E−C−B 95.3 108.1

Decision-dependent sets can mitigate the conservatism of
worst case scenarios.

Complexity

RO-DDU : min
x,y

c>x + f>y

s.t. a>i x + ξ>i y ≤ bi ∀ξi ∈ UPi (x) ⊆ Rn ∀i

Uncertainty set : UP (x) = {ξ |Dξ ≤ d + ∆x}

Theorem 1. The robust linear problem (RO-DDU) with uncer-
tainty set UP is NP-complete.

Structured Uncertainty Sets

The following set captures common models of uncertainty and
incorporates decision dependence.

Π-Uncertainty:

UΠ(x) = {ξ | Dξ ≤ d, ξ ≤ v + W(e− x), ξ ≥ 0}

Note: UΠ(x) is an intersection of a polyhedron and a box. The
size of the box changes with the decision x.

Goal: We reformulate the constraint

y>ξ ≤ b ∀ξ ∈ UΠ(x) (LC)

Worst case scenario for constraint (LC)

h(x,y) =

max
ξ

y>ξ

s.t. Dξ ≤ d

ξ ≤ v + W(e− x)

ξ ≥ 0

h̄(x,y) =

max
ξ,ζ

(y −Πx)>ξ + y>ζ

s.t. Dξ + Dζ ≤ d

ξ ≤We

ζ ≤ v

ξ, ζ ≥ 0

Theorem 2. For a binary x, if the set UΠ(x) is nonempty and
v,W ≥ 0, then for all y:

h(x,y) = h̄(x,y).

Using Theorem 2, the constraint (LC) can be expressed as

t>d + r>We + s>v ≤ b

s> + t>D ≥ y>

r> + t>D ≥ y> − x>Π

r, s, t ≥ 0

→ This has fewer constraints than the Big-M reformulation.

Application: Shortest Path

min
x,y

max
ξ∈USP (x)

∑
(i,j)∈A

cijxij +
∑

(i,j)∈A
dij(ξ)yij

s.t. x ∈ X ⊆ {0, 1}|A|, y ∈ Y
(SP)

The length of the arc (i, j) is uncertain dij(ξ) = d̄ij(1 + ξij).
xij : Whether to reduce the uncertainty in the arc (i, j).
yij : Whether arc (i, j) is in the shortest path.

Uncertainty Set:

USP (x) =

ξ | ∑
(i,j)∈A

ξij ≤ Γ, ξij ≤ 1− γijxij, ξij ≥ 0 ∀(i, j)


Numerical Experiment

Numerical Setup: 100 randomly generated graphs,
c = 1.0, γ = 0.2,Γ = 2
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→ The Π reformulation scales better than Big-M.
→ DDU objective value improves over RO and SO for c < 2.

Conclusion
We present an alternative model to reduce the conservatism
of robust optimization problems which improves the worst
case scenario. We prove the difficulty of decision-dependent
problems and introduce a new uncertainty set to capture the
decision-dependent behavior while still ensuring good reformu-
lation capabilities.
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