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Motivation

• Presence of Products of Uncertain terms.

1 → ξ1 → ξ1ξ2 → ξ1ξ2ξ3 → . . . →
T∏

t=1
ξt

• Leads to nonlinear uncertainty dependence
• Balking: A fraction of the queue departs at every time step. Examples: call

centers, health care systems, etc.
• Compounding: The initial quantity increases by a percentage in every time

period. Examples: interest, economic and population growth etc.
• Depreciation and Shrinkage: The initial quantity decreases by a fixed fraction

over time. Examples: Financial depreciation, damage, loss due to theft
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Multilinear Uncertainty

• Uncertain vector ξ = (ξ1, . . . , ξT ) with Uncertainty Set Ξ.
• Objective functions and constraints involve multilinear uncertainty terms. General

representation

p⊤ξ +
N∑

n=1
qngn(ξ) ≥ q0 ∀ξ ∈ Ξ where gn(ξ) =

∏
i∈Jn

ξi

• Example
p⊤ξ + q1ξ1ξ2 + q2ξ2ξ3 + q3ξ1ξ2ξ3 ≥ q0 ∀ξ ∈ Ξ

Here, J1 = {1, 2}, J2 = {2, 3}, J3 = {1, 2, 3}
• Nonlinear and non-convex function of the uncertainty.
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Existing Results

Various works have looked at reformulation constraints with different types of
uncertainty dependence

• Bilinear Uncertainty: Peng et al. (2017), Zhen et al. (2021)
• Non-convex quadratic Uncertainty: Xu and Hanasusanto (2023)
• Multilinear uncertainty: Georghiou et al. (2015)
• Convex relaxations of multilinear terms: Ryoo and Sahinidis (2001), Luedtke et al.

(2012)
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Tree of Uncertainty Products

• Observation: Constraints with Bilinear Uncertainty can be tractably reformulated
for box uncertainty sets

• Idea: Identify settings in which the collection of multilinear terms in a constraint
can be expressed as a sequence of bilinear terms

• Example: Consider the constraint

x1ξ1ξ2 + x2ξ1ξ2ξ3 ≥ 1 ∀ξ ∈ Ξ

Then

x1η1 + x2η2 ≥ 1 ∀(η1, η2, ξ) ∈ Ξ′ := {(ξ, ξ1ξ2, ξ1ξ2ξ3) : ξ ∈ Ξ}

where η1 = ξ1ξ2 and η2 = η1ξ3.
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Tree of Uncertainty Products

• We can represent the collection of multilinear terms in any constraints as a tree.
• At each node, we add a new uncertain expression to the linear or bilinear

expression present in the parent node.

Root

ξ2

ξ1 · ξ2

ξ4 · ξ1ξ2 ξ5 · ξ1ξ2

ξ3

ξ1 · ξ3 ξ4 · ξ3

ξ1 · ξ3ξ4

ξ4

ξ2 · ξ4
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Lifted Uncertainty Set

• What does the set involving both ξ and η look like.
• At node i , let ℓ(i) be the parent node and k∗

i be the index of the uncertain term
added at node i

• Let ηi and ηi be products of the component wise minimum and maximums of
elements ξ which form ηi

Ξ :=


(ξ, η) ∈ RK+N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ ∈ Ξ, ηi = ξk∗
i

∀i : ℓ(i) = 0
ηi ≥ ηℓ(i)ξk∗

i
+ ξk∗

i
ηℓ(i) − ηℓ(i)ξk∗

i
∀i : ℓ(i) ̸= 0

ηi ≥ η
ℓ(i)ξk∗

i
+ ξk∗

i
ηℓ(i) − η

ℓ(i)ξk∗
i

∀i : ℓ(i) ̸= 0

ηi ≤ ηℓ(i)ξk∗
i

+ ξk∗
i
ηℓ(i) − ηℓ(i)ξk∗

i
∀i : ℓ(i) ̸= 0

ηi ≤ η
ℓ(i)ξk∗

i
+ ξk∗

i
ηℓ(i) − η

ℓ(i)ξk∗
i

∀i : ℓ(i) ̸= 0


.
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Results

p⊤ξ +
N∑

n=1
qngn(ξ) ≥ q0 ∀ξ ∈ Ξ (1) p⊤ξ +

N∑
n=1

qnηn ≥ q0 ∀(η, ξ) ∈ Ξ (2)

Theorem
The constraint (2) is a conservative reformulation of the constraint (1).

Theorem
If Ξ =×N

n=1[0, ξn] and the tree of uncertain products is such that every uncertain
element is only added to a single node then constraint (1) is equivalent to (2).
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Proof of Theorem 1

• The proof of the first theorem relies on showing that {(ξ, gn(ξ)) : ξ ∈ Ξ} ⊂ Ξ.
• This uses the fact that for bilinear terms, the nonlinear set {(ξ1, ξ2, ξ1, ξ2) : ξ ∈ Ξ}

is a subset of the lifted set constructed using the McCormick envelopes.
• We then show that for every multilinear expression, the product term at each

node in the path to the multilinear term is included in the lifted set using
induction and the previous bilinear result.
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Proof of Theorem 2

• The proof of the second theorem has the following key steps
• Show that in the original constraint we can replace the uncertainty set by its

convex hull. This is done using the Caratheodory Theorem.
• Show that Conv({(ξ, gn(ξ)) : ξ ∈ Ξ}) ⊆ Ξ. This is true due to Theorem 1.
• Show that Ξ ⊆ Conv({(ξ, gn(ξ)) : ξ ∈ Ξ}).

— This is done by showing that it is sufficient to show the result for the unit cube.
— Show that for the unit cube, every extreme point of Ξ lies in

Conv({(ξ, gn(ξ)) : ξ ∈ Ξ}).
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Decision Rule Usage

So far p and qn have been fixed and independent of ξ.

p⊤ξ +
N∑

n=1
qngn(ξ) ≥ q0 ∀ξ ∈ Ξ

If p and qn are linear or multilinear functions of the uncertainty

p = p0 + Pξ, qn = q0
n + Q⊤

n ξ
p = p0 + P

∏
j∈J

ξj , qn = q0
n + Qn

∏
j∈Jn

ξj

The constraint remains multilinear and can be reformulated as before.
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Conclusion

• We introduce a way to conservatively reformulate robust constraints with
multilinear uncertainty.

• We identify conditions in which this reformulation is exact.
• These results are used to reformulate a robust dynamic capacity management

problem which captures queuing behaviour and balking.

Han, E., Sharma, K., Singh, K., and Nohadani, O. Dynamic Capacity Management for
Deferred Surgeries
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Thank you for your attention!



Tightening for Non-Rectangular Settings

If Ξ is non-negative, compact and convex and lies in×k∈[K ][ξk , ξk ] Then, we can
obtain a tighter representation for the lifted uncertainty set using results by Astreicher
et al. (2021)ηi ≤ η∗

i

η∗
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