

Data-driven Distributionally Robust Optimization over Time

INFORMS Annual Meeting 2023

Kartikey Sharma

Joint work with Kevin-Martin Aigner, Kristin Braun, Sebastian Pokutta, Frauke Liers, Andreas Barman, Oscar Schneider, and Sebastian Tschupik

 Develop optimization under uncertainty model that incorporates new information as a part of optimization process

- Develop optimization under uncertainty model that incorporates new information as a part of optimization process
- DRO can integrate new samples while accounting for uncertainty

$$\widehat{J}_t := \min_{x \in \mathcal{X}} \max_{p \in \mathcal{P}_t}$$

 $\mathbb{E}_{s \sim p}\left[f(x,s)\right]$

- Develop optimization under uncertainty model that incorporates new information as a part of optimization process
- DRO can integrate new samples while accounting for uncertainty

$$\widehat{J}_t := \min_{x \in \mathcal{X}} \max_{p \in \mathcal{P}_t}$$

DRO problems are difficult to solve

x $\mathbb{E}_{s \sim p}[f(x,s)]$

- Develop optimization under uncertainty model that incorporates new information as a part of optimization process
- DRO can integrate new samples while accounting for uncertainty

$$\widehat{J}_t := \min_{x \in \mathcal{X}} \max_{p \in \mathcal{P}_t}$$

- DRO problems are difficult to solve
 - Dualization increases the size of the problem

$$\mathbb{E}_{s \sim p}\left[f(x,s)\right]$$

- Develop optimization under uncertainty model that incorporates new information as a part of optimization process
- DRO can integrate new samples while accounting for uncertainty

$$\widehat{J}_t := \min_{x \in \mathcal{X}} \max_{p \in \mathcal{P}_t}$$

- DRO problems are difficult to solve
 - Dualization increases the size of the problem
 - It also removes any special structure

$$\mathbb{E}_{s \sim p}\left[f(x,s)\right]$$

Existing Work

Existing Work

DRO over Time

Uses recomputation of exact solution with updated ambiguity set (Bayraksan) and Love 2015, Esfahani and Kuhn 2018, Kirschner et. al. 2021 ...)

Existing Work

DRO over Time

 Uses recomputation of exact solution with updated ambiguity set (Bayraksan) and Love 2015, Esfahani and Kuhn 2018, Kirschner et. al. 2021 ...)

Faster Solutions Methods

 Convert DRO problem into a regularisation problem (Namkoong and Duchi 2016, Chen et al 2017, Levy et al 2020 ...)

Contributions

- We provide an Online Algorithm for DRO that simultaneously learns the uncertainty set and converges to the optimal solution
- We prove the consistency of our algorithm and also bound its regret over time
- We illustrate the performance of our method through numerical experiments on benchmark libraries.

Learning

- Observe samples from a distribution p^* (finite dimension)

• Use samples to construct ambiguity set \mathscr{P}_0 containing p^* with high probability

Learning

- Observe samples from a distribution p^* (finite dimension)

Optimization

• Leverage ambiguity set \mathscr{P}_t to make robust decisions x_t

• Use samples to construct ambiguity set \mathscr{P}_0 containing p^* with high probability

Learning

- Observe samples from a distribution p^* (finite dimension)

Optimization

• Leverage ambiguity set \mathscr{P}_t to make robust decisions X_t

Learning

• Use new observations to update the set \mathscr{P}_{t+1} and repeat

• Use samples to construct ambiguity set \mathscr{P}_0 containing p^* with high probability

Confidence Interval Ambiguity Set

$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid |p - \hat{p}_t| \le \frac{z_{\frac{\delta_t}{2}}}{\sqrt{t}} \right\}$

- Confidence Interval Ambiguity Set
- ℓ_2 -norm Ambiguity Set

$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid |p - \hat{p}_t| \le \frac{z_{\frac{\delta_t}{2}}}{\sqrt{t}} \right\}$$
$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid ||p - \hat{p}_t||_2 \le \frac{\sqrt{2|\mathcal{S}\log(2/\delta_t)}}{\sqrt{t}} \right\}$$

- Confidence Interval Ambiguity Set
- ℓ_2 -norm Ambiguity Set
- Kernel based Ambiguity Set

 $\mathcal{P}_t =$

$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid |p - \hat{p}_t| \leq \frac{z_{\frac{\delta_t}{2}}}{\sqrt{t}} \right\}$$
$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid ||p - \hat{p}_t||_2 \leq \frac{\sqrt{2|\mathcal{S}\log(2/\delta_t)}}{\sqrt{t}} \right\}$$
$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid ||p - \hat{p}_t||_M \leq \frac{\sqrt{C}}{\sqrt{t}} (2 + \sqrt{2\log(1/\delta_t)}) \right\}$$

- Confidence Interval **Ambiguity Set**
- ℓ_2 -norm Ambiguity Set
- Kernel based **Ambiguity Set**
 - The sets include the true distribution with high probability

 $\mathcal{P}_t =$

$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid |p - \hat{p}_t| \leq \frac{z_{\frac{\delta_t}{2}}}{\sqrt{t}} \right\}$$
$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid ||p - \hat{p}_t||_2 \leq \frac{\sqrt{2|\mathcal{S}\log(2/\delta_t)}}{\sqrt{t}} \right\}$$
$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid ||p - \hat{p}_t||_M \leq \frac{\sqrt{C}}{\sqrt{t}} (2 + \sqrt{2\log(1/\delta_t)}) \right\}$$

- Confidence Interval Ambiguity Set
- ℓ_2 -norm Ambiguity Set
- Kernel based Ambiguity Set
 - The sets include the true distribution with high probability
 - They shrink fast enough to compensate for the increasing probability requirements

 $\mathcal{P}_t =$

$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid |p - \hat{p}_t| \le \frac{z_{\frac{\delta_t}{2}}}{\sqrt{t}} \right\}$$
$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid ||p - \hat{p}_t||_2 \le \frac{\sqrt{2|\mathcal{S}\log(2/\delta_t)}}{\sqrt{t}} \right\}$$
$$\mathcal{P}_t = \left\{ p \in \mathcal{P}_0 \mid ||p - \hat{p}_t||_M \le \frac{\sqrt{C}}{\sqrt{t}} (2 + \sqrt{2\log(1/\delta_t)}) \right\}$$

DRO Problem

$\widehat{J}_t := \min_{x \in \mathcal{X}} \max_{p \in \mathcal{P}_t} \mathbb{E}_{s \sim p} \left[f(x, s) \right]$

DRO Problem

$$\widehat{J}_t := \min_{x \in \mathcal{X}} \max_{p \in \mathcal{P}_t} \mathbb{E}_{s \sim p} \left[f(x, s) \right]$$

 Dual Reformulation for Interval Ambiguity Sets

 $\min_{x,z,\alpha,\beta} z - \langle l_t, \alpha \rangle + \langle u_t, \beta \rangle$ s.t. $z - \alpha_k + \beta_k \ge f(x, s_k) \quad \forall k = 1, \dots, |\mathcal{S}|,$ $\alpha, \beta \ge 0,$ $x \in \mathcal{X}, \ z \in \mathbb{R}, \ \alpha, \beta \in \mathbb{R}^{|\mathcal{S}|}.$

DRO Problem

$$\widehat{J}_t := \min_{x \in \mathcal{X}} \max_{p \in \mathcal{P}_t} \mathbb{E}_{s \sim p} \left[f(x, s) \right]$$

 Dual Reformulation for Interval Ambiguity Sets

 $\min_{\substack{x,z,\alpha,\beta}} z - \langle l_t, \alpha \rangle + \langle u_t, \beta \rangle$ s.t. $z - \alpha_k + \beta_k \ge f(x, s_k) \quad \forall k = 1, \dots, |\mathcal{S}|,$ $\alpha, \beta \ge 0,$ $x \in \mathcal{X}, \ z \in \mathbb{R}, \ \alpha, \beta \in \mathbb{R}^{|\mathcal{S}|}.$

Algorithm 1 DRO over Time

- 1: Input: functions $f(\cdot, s)$ for $s \in S$, feasible set \mathcal{X} , initial amb
- 2: **Output**: sequence of DRO solutions x_1, \ldots, x_T
- 3: for t = 1 to T do
- 4: $x_t \leftarrow \text{solve Problem (1) or (2) for } \mathcal{P}_{t-1}$
- 5: $\mathcal{P}_t \leftarrow$ observe data and update set parameters such as f ambiguity set.
- 6: **end for**

• Initial solutions x_0 and p_0

• Step by adversary *p*

- Step by adversary p
- Step by decision maker *x*

- Step by adversary p $p_t = \arg \min_{\sigma \mathcal{D}} p_t$
- Step by decision maker *x*

 $p_{t} = \arg\min_{p \in \mathcal{P}_{t-1}} \left\langle -\eta \nabla_{p} \mathbb{E}_{s \sim p_{t-1}} \left[f(x_{t-1}, s) \right], p \right\rangle + \frac{1}{2} \|p - p_{t-1}\|^{2}.$

- Step by adversary p $p_t = \arg \min_{p \in \mathcal{P}_{t-1}} p_t$
- Step by decision $x_t = \arg \min_{x \in \mathcal{X}} \mathbb{E}_{s \sim p_t}[f(x, s)]$ maker x

$$\sum_{t=1}^{n} \left\langle -\eta \nabla_p \mathbb{E}_{s \sim p_{t-1}} \left[f(x_{t-1}, s) \right], p \right\rangle + \frac{1}{2} \|p - p_{t-1}\|^2.$$

$$\mathbb{E}_{s \sim p_t} [f(x, s)]$$

- 1: Input: functions $f(\cdot, s)$ for $s \in S$, feasible set \mathcal{X} , initial ambiguity set \mathcal{P}_0
- 2: **Output:** $x_1, ..., x_T$

- 1: **Input:** functions $f(\cdot, s)$ for $s \in S$, feasible set \mathcal{X} , initial ambiguity set \mathcal{P}_0
- 2: **Output:** $x_1, ..., x_T$
- 3: Set $\mathcal{P}_0 = \{ p \in [0, 1]^{|\mathcal{S}|} \mid \sum_{k=1}^{|\mathcal{S}|} p_k = 1 \}$

- 1: Input: functions $f(\cdot, s)$ for $s \in S$, feasible set \mathcal{X} , initial ambiguity set \mathcal{P}_0
- 2: **Output:** $x_1, ..., x_T$
- 3: Set $\mathcal{P}_0 = \{ p \in [0, 1]^{|\mathcal{S}|} \mid \sum_{k=1}^{|\mathcal{S}|} p_k = 1 \}$
- 4: Set $p_0 = \left(\frac{1}{|S|}, ..., \frac{1}{|S|}\right) \in [0, 1]^{|S|}$
- 5: Set $x_0 = \min_{x \in \mathcal{X}} f(x, s_1)$
- 6: for t = 1 to T do

ZUSE INSTITUTE **BERLIN**

Online Optimization

- 1: Input: functions $f(\cdot, s)$ for $s \in S$, feasible set \mathcal{X} , initial ambiguity set \mathcal{P}_0
- 2: **Output:** $x_1, ..., x_T$
- 3: Set $\mathcal{P}_0 = \{ p \in [0, 1]^{|\mathcal{S}|} \mid \sum_{k=1}^{|\mathcal{S}|} p_k = 1 \}$
- 4: Set $p_0 = \left(\frac{1}{|S|}, ..., \frac{1}{|S|}\right) \in [0, 1]^{|S|}$
- 5: Set $x_0 = \min_{x \in \mathcal{X}} f(x, s_1)$
- 6: for t = 1 to T do
- $\tilde{p}_t \leftarrow p_{t-1} + \eta \nabla_p \mathbb{E}_{s \sim p_{t-1}} \left[f(x_{t-1}, s) \right]$ 7:
- 8: $p_t \leftarrow \arg\min_{p \in \mathcal{P}_{t-1}} \frac{1}{2} \|p \tilde{p}_t\|^2$

ZUSE INSTITUTE **BERLIN**

Online Optimization

Algorithm 2 DRO over Time with Online Projected Gradient Descent

- 1: Input: functions $f(\cdot, s)$ for $s \in S$, feasible set \mathcal{X} , initial ambiguity set \mathcal{P}_0
- 2: **Output:** $x_1, ..., x_T$
- 3: Set $\mathcal{P}_0 = \{ p \in [0, 1]^{|\mathcal{S}|} \mid \sum_{k=1}^{|\mathcal{S}|} p_k = 1 \}$
- 4: Set $p_0 = \left(\frac{1}{|S|}, ..., \frac{1}{|S|}\right) \in [0, 1]^{|S|}$
- 5: Set $x_0 = \min_{x \in \mathcal{X}} f(x, s_1)$
- 6: for t = 1 to T do

7:
$$\tilde{p}_t \leftarrow p_{t-1} + \eta \nabla_p \mathbb{E}_{s \sim p_{t-1}} \left[f(x_{t-1}, s) \right]$$

8:
$$p_t \leftarrow \arg\min_{p \in \mathcal{P}_{t-1}} \frac{1}{2} \|p - \tilde{p}_t\|^2$$

 $x_t \leftarrow \arg\min_{x \in \mathcal{X}} \mathbb{E}_{s \sim p_t} \left[f(x, s) \right]$ 9:

ZUSE INSTITUTE **BERLIN**

Online Optimization

Algorithm 2 DRO over Time with Online Projected Gradient Descent

- 1: Input: functions $f(\cdot, s)$ for $s \in S$, feasible set \mathcal{X} , initial ambiguity set \mathcal{P}_0
- 2: **Output:** $x_1, ..., x_T$
- 3: Set $\mathcal{P}_0 = \{ p \in [0, 1]^{|\mathcal{S}|} \mid \sum_{k=1}^{|\mathcal{S}|} p_k = 1 \}$
- 4: Set $p_0 = \left(\frac{1}{|S|}, ..., \frac{1}{|S|}\right) \in [0, 1]^{|S|}$
- 5: Set $x_0 = \min_{x \in \mathcal{X}} f(x, s_1)$
- 6: for t = 1 to T do

7:
$$\tilde{p}_t \leftarrow p_{t-1} + \eta \nabla_p \mathbb{E}_{s \sim p_{t-1}} \left[f(x_{t-1}, s) \right]$$

8:
$$p_t \leftarrow \arg\min_{p \in \mathcal{P}_{t-1}} \frac{1}{2} \|p - \tilde{p}_t\|^2$$

- $x_t \leftarrow \arg\min_{x \in \mathcal{X}} \mathbb{E}_{s \sim p_t} \left[f(x, s) \right]$ 9:
- 10:ambiguity set.

 $\mathcal{P}_t \leftarrow \text{observe data and update set parameters such as } \hat{p}_t, l_t, u_t \text{ and } \epsilon_t \text{ as per the type of}$
ZUSE INSTITUTE **BERLIN**

Online Optimization

Algorithm 2 DRO over Time with Online Projected Gradient Descent

- 1: Input: functions $f(\cdot, s)$ for $s \in S$, feasible set \mathcal{X} , initial ambiguity set \mathcal{P}_0
- 2: **Output:** $x_1, ..., x_T$
- 3: Set $\mathcal{P}_0 = \{ p \in [0, 1]^{|\mathcal{S}|} \mid \sum_{k=1}^{|\mathcal{S}|} p_k = 1 \}$
- 4: Set $p_0 = \left(\frac{1}{|S|}, ..., \frac{1}{|S|}\right) \in [0, 1]^{|S|}$
- 5: Set $x_0 = \min_{x \in \mathcal{X}} f(x, s_1)$
- 6: for t = 1 to T do

7:
$$\tilde{p}_t \leftarrow p_{t-1} + \eta \nabla_p \mathbb{E}_{s \sim p_{t-1}} \left[f(x_{t-1}, s) \right]$$

8:
$$p_t \leftarrow \arg\min_{p \in \mathcal{P}_{t-1}} \frac{1}{2} \|p - \tilde{p}_t\|^2$$

- $x_t \leftarrow \arg\min_{x \in \mathcal{X}} \mathbb{E}_{s \sim p_t} \left[f(x, s) \right]$ 9:
- 10:ambiguity set.

11: end for

 $\mathcal{P}_t \leftarrow \text{observe data and update set parameters such as } \hat{p}_t, l_t, u_t \text{ and } \epsilon_t \text{ as per the type of}$

With probability 1 we have $\lim_{t\to\infty} \widehat{J}_t = J^*$ $\lim_{t\to\infty} x_t = x^*$

With probability 1 we have $\lim_{t\to\infty} \widehat{J}_t = J^*$ $\lim_{t\to\infty} x_t = x^*$

Proof technique:

True distribution inside ambiguity set

• The ambiguity set converges to the true distribution

With probability at least $1 - \delta$ we have $\frac{1}{T} \sum_{t=1}^{T} \left(\max_{p \in \mathcal{P}_t} \mathbb{E}_{s \sim p} \left[f(x_t, s) \right] - \min_{x \in \mathcal{X}} \max_{p \in \mathcal{P}_t} \right]$

$$\sup_{t} \mathbb{E}_{s \sim p} \left[f(x, s) \right] \right) \leq G \sqrt{\frac{|\mathcal{S}| h(T)}{2T}} + \frac{2G}{T},$$

With probability at least $1 - \delta$ we have

$$\frac{1}{T}\sum_{t=1}^{T} \left(\max_{p \in \mathcal{P}_t} \mathbb{E}_{s \sim p} \left[f(x_t, s) \right] - \min_{x \in \mathcal{X}} \max_{p \in \mathcal{P}_t} \mathbb{E}_{s \sim p} \left[f(x, s) \right] \right) \le G \sqrt{\frac{|\mathcal{S}|h(T)}{2T}} + \frac{2G}{T},$$

Here

 $h(T) \in \mathcal{O}(|\mathcal{S}|\log^2(T))$

With probability at least $1 - \delta$ we have $\frac{1}{T} \sum_{t=1}^{T} \left(\max_{p \in \mathcal{P}_t} \mathbb{E}_{s \sim p} \left[f(x_t, s) \right] - \min_{x \in \mathcal{X}} \max_{p \in \mathcal{P}_t} \right]$

Here

$h(T) \in \mathcal{O}(|\mathcal{S}|\log^2(T))$

• Linear Dependence on Scenarios

$$\sup_{t} \mathbb{E}_{s \sim p} \left[f(x, s) \right] \right) \leq G \sqrt{\frac{|\mathcal{S}| h(T)}{2T}} + \frac{2G}{T},$$

Bound the regret term by the linear drop in the function value

$\sum_{t=1}^{T} \left(\max_{p \in \mathcal{P}_t} \mathbb{E}_{s \sim p} \left[f(x_t, s) \right] - \min_{x \in \mathcal{X}} \mathbb{E}_{s \sim p_t} \left[f(x, s) \right] \right) = \sum_{t=1}^{T} \left\langle \nabla g_t(p_t), p_t - u_t \right\rangle$

Bound the regret term by the linear drop in the function value

gradient and the cumulative length of the steps taken

$$\sum_{t=1}^{T} \langle \eta \nabla g_t(p_t), p_t - u_t \rangle \leq \sum_{t=1}^{T} \frac{\eta^2}{2} \| \nabla g_t(p_t) \|^2 + \sum_{t=1}^{T} \left(\frac{1}{2} \| p_t - u_t \|^2 - \frac{1}{2} \| p_{t+1} - u_t \|^2 \right)$$

$$\mathcal{L}_{p_t}\left[f(x,s)\right]\right) = \sum_{t=1}^T \left\langle \nabla g_t(p_t), p_t - u_t \right\rangle$$

Bound the cumulative linear drop in function value by a bound on the

Bound the regret term by the linear drop in the function value

$$\sum_{t=1}^{T} \left(\max_{p \in \mathcal{P}_t} \mathbb{E}_{s \sim p} \left[f(x_t, s) \right] - \min_{x \in \mathcal{X}} \mathbb{E}_{s \sim p_t} \left[f(x, s) \right] \right) = \sum_{t=1}^{T} \left\langle \nabla g_t(p_t), p_t - u_t \right\rangle$$

- gradient and the cumulative length of the steps taken $\sum_{t=1}^{T} \langle \eta \nabla g_t(p_t), p_t u_t \rangle \leq \sum_{t=1}^{T} \frac{\eta^2}{2} \| \nabla g_t(p_t) \|^2 + \sum_{t=1}^{T} \left(\frac{1}{2} \| p_t u_t \|^2 \frac{1}{2} \| p_t u_t \|^2 \right)$
- size.

$$\sum_{t=1}^{T} \left(\frac{1}{2} \| p_t - u_t \|^2 - \frac{1}{2} \| p_{t+1} - u_t \|^2 \right) \le \sum_{t=1}^{T} \frac{1}{2} \| p_t - u_t \|^2$$

Bound the cumulative linear drop in function value by a bound on the

$$(p_t)\|^2 + \sum_{t=1}^T \left(\frac{1}{2}\|p_t - u_t\|^2 - \frac{1}{2}\|p_{t+1} - u_t\|^2\right)$$

Bound the cumulative length of the steps on the basis of the uncertainty set

• Primarily focuses on the gap between adversarial solutions p_t

- Primarily focuses on the gap between adversarial solutions p_t
- Uses construction of ambiguity sets to bound the gap on the sequence of generated adversarial solutions

- Primarily focuses on the gap between adversarial solutions p_t
- Uses construction of ambiguity sets to bound the gap on the sequence of generated adversarial solutions

$$\frac{1}{2} \sum_{t=1}^{T} \|p_t - q_t\|^2 \le h(T)$$

 $p_t \in \mathcal{P}_{t-1}, q_t \in \mathcal{P}_t$

- Primarily focuses on the gap between adversarial solutions p_{t}
- Uses construction of ambiguity sets to bound the gap on the sequence of generated adversarial solutions

$$\begin{split} \frac{1}{2} \sum_{t=1}^{T} \|p_t - q_t\|^2 &\leq h(T) \quad \text{Confidence Intervals} & h(T) = 8|\mathcal{S}|\log(\pi T)(1 + \log T) \\ p_t &\in \mathcal{P}_{t-1}, q_t \in \mathcal{P}_t \quad \mathscr{C}_2\text{-norm Sets} & h(T) = 8|\mathcal{S}|\log\frac{\pi T}{\sqrt{3\delta}}(1 + \log T) \\ \text{Kernel based Sets} & h(T) = \frac{32C}{\lambda^2} + \frac{32C}{\lambda^2}\log\frac{\pi T}{\sqrt{6\delta}}(1 + \log T) \end{split}$$

Numerical Experiments

Benchmark Libraries

- MILPs and MIQPs from the MIPLIB set of benchmark Instances lacksquare
- Comparisons against other methods \bullet

Distributionally Robust Network Design

Network design with uncertain demands. Instances by Altin et. al. (2007)

- ChicagoSketch model from Transportation Networks library
- Illustration of impact on solutions

Benchmark Libraries

- Takes MILP and MIQP instances from MIPLIB library
- Instances are of the form

$$f(x,s) = x^{\mathsf{T}}Qx + (c+s)^{\mathsf{T}}x + d$$

Objective uncertainty in the instances through scenarios $s \in \mathcal{S}$ with $|\mathcal{S}| = (2, 10, 15)$

Benchmark Instances: Different Ambiguity Sets

Benchmark Instances: Different Ambiguity Sets

Benchmark Instances: Different Ambiguity Sets

The objective value shrinks for all set types

Fastest reduction for confidence intervals

	$ \mathcal{S} $	Online Robust	Exact DRO
MIP (I)	10	$52.4\mathrm{s}$	115.8s
MIP (ℓ_2)	10	49.4s	127.5s
MIP (K)	10	56.3s	129.5s
MIP(I)	50	57.7s	176.7s
MIP (ℓ_2)	50	60.4s	206.1s
MIP (K)	50	67.0s	244.4s
MIQP (I)	2	170.2s	271.4s
MIQP (ℓ_2)	2	186.3s	329.5s
MIQP (K)	2	188.6s	359.6s

- Г

- * *
- *
- * *
- *

	$ \mathcal{S} $	Online Robust	Exact DRO
MIP (I)	10	52.4s	115.8s
MIP (ℓ_2)	10	49.4s	127.5s
MIP (K)	10	56.3s	129.5s
MIP(I)	50	57.7s	$176.7s^*$
MIP (ℓ_2)	50	60.4s	$206.1\mathrm{s}^*$
MIP (K)	50	67.0s	$244.4s^*$
MIQP (I)	2	170.2s	$271.4s^*$
MIQP (ℓ_2)	2	$186.3 \mathrm{s}$	$329.5s^*$
MIQP (K)	2	188.6s	$359.6s^*$

More time savings for large and non linear problems

	$MIP \\ \mathcal{S} = 10$	$MIP \\ \mathcal{S} = 50$	
DRO Wassertein DRBO	45.6s 52.3s $42.7s^{**}$	$55.9s^{*}$ 59.1s 66.1s^{**}	2' 2' 7
Online robust Running SO	$\begin{array}{c} 26.8 \mathrm{s} \\ 26.6 \mathrm{s} \end{array}$	$\begin{array}{c} 27.1 \mathrm{s} \\ 26.9 \mathrm{s} \end{array}$	$\frac{1}{1}$

- MIQP $|\mathcal{S}| = 2$
- $71.4s^{*}$
- 99.9s
- $38.3s^*$
- 70.2s72.6s

	$MIP \\ \mathcal{S} = 10$	$MIP \\ \mathcal{S} = 50$	
DRO Wassertein DRBO	45.6s 52.3s $42.7s^{**}$	$55.9s^*$ 59.1s 66.1s**	2' 2' 7
Online robust Running SO	$\begin{array}{c} 26.8 \mathrm{s} \\ 26.6 \mathrm{s} \end{array}$	$\begin{array}{c} 27.1 \mathrm{s} \\ 26.9 \mathrm{s} \end{array}$	$\frac{1}{1}$

- MIQP $|\mathcal{S}| = 2$
- $71.4s^{*}$
- 99.9s
- $38.3s^*$
- 70.2s72.6s

Online robust methods are significantly faster

Distributionally Robust Network Design

- demand
- Demand is uncertain. Interval ambiguity sets.
- Instances
 - res8: V = 50, E = 77
 - w1 100: V = 100, E = 207
 - w1_200: V = 200, E = 775

Compute minimum cost network topology and edge capacity to satisfy

	$ \mathcal{S} $	Online robust	Exact 1
res8	10	0.2s	0
res8	50	0.6s	11
w1_100	10	0.3s	32
w1_100	50	1.5s	95
w1_200	10	1.2s	38
w1_200	50	4.7s	1282

- Choose the shortest paths in a street network with uncertain arc times
- Model: ChicagoSketch with 933 nodes and 2950 arcs
- Randomly generated true probability distribution for arcs lengths
- Solving directly eliminates structure

Optimal Route Choice

Optimal Route Choice

Continuous decrease in objective value but discrete jumps due to changing solution

Conclusions

- Method for optimization under uncertainty which combines learning and **Distributionally Robust Optimization** Iterative algorithm for solution of problem which avoid large formulations and maintains structure Theoretical proofs of convergence and solution quality

- Numerical illustrations for the results Aigner et al. "Data-driven Distributionally Robust Optimization over Time." INFORMS Journal on Optimization (2023).

Email: kartikey.sharma@zib.de

