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Motivation 

• Develop optimization under uncertainty model that incorporates new 
information as a part of optimization process

• DRO problems are difficult to solve
- Dualization increases the size of the problem
- It also removes any special structure

• DRO can integrate new samples while accounting for uncertainty
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Existing Work

DRO over Time 

• Uses recomputation of exact solution with updated ambiguity set (Bayraksan 
and Love 2015, Esfahani and Kuhn 2018, Kirschner et. al. 2021 …)

Faster Solutions Methods 

• Convert DRO problem into a regularisation problem (Namkoong and 
Duchi 2016, Chen et al 2017, Levy et al 2020 …)



Contributions

• We provide an Online Algorithm for DRO that 
simultaneously learns the uncertainty set and converges 
to the optimal solution

• We prove the consistency of our algorithm and also 
bound its regret over time

• We illustrate the performance of our method through 
numerical experiments on benchmark libraries. 
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• Observe samples from a distribution  (finite dimension)


• Use samples to construct ambiguity set  containing  with high probability

p*

𝒫0 p*

Optimization 

• Leverage ambiguity set  to make robust decisions 𝒫t xt

Learning 

• Use new observations to update the set  and repeat𝒫t+1
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• They shrink fast enough to compensate for the increasing 
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The probability distribution in the next iteration is therefore given as the unique solution

pt = arg min
p2Pt�1

⌦
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2.

Note that the x-player uses pt in round t to estimate xt and solves a standard SO problem which

is easier to solve than the reformulated DRO program. This pt is then used to estimate pt+1 in

round t+1. As such, the value of xt depends on pt in round t (thus xt and pt are not conditionally

independent in round t). Therefore, as per Pokutta and Xu (2021), the learner for pt has to be a

strong learner in order to ensure sublinear regret. This paper also shows that the online gradient

descent algorithm satisfies the necessary conditions for it to be a strong learner.

3.1. Algorithm

We provide a pseudo code of our method for DRO over Time via online robust optimization in

Algorithm 2. It combines alternating solutions of the min and max problems with the update

of the ambiguity sets. For the sake of simplicity, we assume that our algorithm starts without

any knowledge of the probability distribution over the scenarios and therefore we initialize the

ambiguity set as the full probability simplex in step 1. The algorithm can be easily modified to

incorporate any historical information. The initialization of p0 2P0 and x0 2X in step 4 and step 5

can be chosen arbitrarily and does not e↵ect our theoretical results. Each round t= 1, ..., T starts

with the update of pt via projected gradient descent and of xt as the solution of an SO problem.

At the end of the round, we observe new data in form of (i.i.d.) scenario observations and update

the ambiguity set as explained in Section 2.

Algorithm 2 DRO over Time with Online Projected Gradient Descent

1: Input: functions f(·, s) for s2 S, feasible set X , initial ambiguity set P0

2: Output: x1, . . . , xT

3: Set P0 = {p2 [0,1]|S|
|
P|S|

k=1 pk = 1}

4: Set p0 =
⇣

1
|S| , ...,

1
|S|

⌘
2 [0,1]|S|

5: Set x0 =minx2X f(x, s1)

6: for t= 1 to T do

7: p̃t pt�1 + ⌘rpEs⇠pt�1 [f(xt�1, s)]

8: pt argminp2Pt�1
1
2
kp� p̃tk

2

9: xt argminx2X Es⇠pt [f(x, s)]

10: Pt  observe data and update set parameters such as p̂t, lt, ut and ✏t as per the type of

ambiguity set.

11: end for
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round t+1. As such, the value of xt depends on pt in round t (thus xt and pt are not conditionally
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strong learner in order to ensure sublinear regret. This paper also shows that the online gradient
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3.1. Algorithm
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Algorithm 2 DRO over Time with Online Projected Gradient Descent

1: Input: functions f(·, s) for s2 S, feasible set X , initial ambiguity set P0

2: Output: x1, . . . , xT

3: Set P0 = {p2 [0,1]|S|
|
P|S|

k=1 pk = 1}

4: Set p0 =
⇣

1
|S| , ...,

1
|S|

⌘
2 [0,1]|S|

5: Set x0 =minx2X f(x, s1)

6: for t= 1 to T do

7: p̃t pt�1 + ⌘rpEs⇠pt�1 [f(xt�1, s)]

8: pt argminp2Pt�1
1
2
kp� p̃tk

2

9: xt argminx2X Es⇠pt [f(x, s)]

10: Pt  observe data and update set parameters such as p̂t, lt, ut and ✏t as per the type of

ambiguity set.

11: end for
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Algorithm 2 provides a sequence of solutions xt for each time step t= 0, ..., T . In order to prove

that the quality of the solutions xt improves over time, we bound the average gap over time between

the worst case performance of xt and the optimal worst case (exact DRO) solution. Since the

feasible set of the p-player changes over time it is not possible to apply existing techniques for

regret bounds on min-max problems to our setting as these techniques have primarily focused on

stationary ambiguity sets. In this paper, we extend these existing techniques to the case of shrinking

ambiguity sets by leveraging the fact that all the ambiguity sets contain a common distribution

(the true distribution).

The two main ingredients for the theoretical analysis are a constrained gradient (rpEs⇠p [f(x, s)])

and a constrained path length (
PT

t=1
1
2
kpt � qtk2 for all pt 2 Pt�1, qt 2 Pt) for the online gradient

descent to work on non-stationary feasible sets. The former is a classical assumption for steep-

est descent algorithms while the latter is commonly used in dynamic regret bounds for online

algorithms, see e.g. Zhao et al. (2020).

For constant ambiguity sets, it is known that regret bounds of the form O(1/
p

T ) can be

derived (Pokutta and Xu 2021, Besbes et al. 2015). For our case, a careful analysis of the algo-

rithm leads to a bound of O(
p

h(T )/
p

T ) that is presented in Theorem 3, with the corresponding

bounding terms h(T ) for the path lengths being proven afterwards. We are able to achieve almost

the same bound for this new setting with shrinking ambiguity sets.

Theorem 3 (Dynamic regret bound). Let f : X ⇥ S ! R be uniformly bounded, i.e., for

all (x, s) 2 X ⇥ S, there exists a constant G > 0 such that |f(x, s)|  G. Let ⌘ :=
q

2h(T )
G2T |S| where

PT
t=1

1
2
kpt � qtk2

 h(T ) for p 2 Pt�1 and q 2 Pt. The output (x1, ..., xT ) from Algorithm 2 with

confidence update �t :=
6�

⇡2t2
and � 2 (0,1) fulfills

1

T

TX

t=1

✓
max
p2Pt

Essp [f(xt, s)]�min
x2X

max
p2Pt

Essp [f(x, s)]

◆
 G

r
|S|h(T )

2T
+

2G

T
,

with probability at least 1� �.

Proof of Theorem 3 Define gt(p) := �Essp [f(xt, s)]. An online gradient descent iteration is

given by

pt+1 = argmin
p2Pt

h⌘rgt(pt), pi+
1

2
kp� ptk

2,

with the variational inequality

h⌘rgt(pt), ut � pt+1i+ hpt+1 � pt, ut � pt+1i � 0, for all ut 2 Pt

With probability at least  we have1 − δ
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• Linear Dependence on Scenarios
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To prove the lower bound, let x̄t be the optimal solution to the problem

minx2X maxp2Pt Es⇠p [f(x, s)]. Then we can write the inner term in the left hand side (LHS) in

equation (3) as

max
p2Pt

Es⇠p [f(xt, s)]�max
p2Pt

Es⇠p [f(x̄t, s)] .

We know that x̄t is the optimal solution to the problem minx2X maxp2Pt Es⇠p [f(x, s)], this means

that

max
p2Pt

Es⇠p [f(xt, s)]�min
x2X

max
p2Pt

Es⇠p [f(x, s)]

=max
p2Pt

Es⇠p [f(x̄t, s)] .

Thus we get

max
p2Pt

Es⇠p [f(xt, s)]�max
p2Pt

Es⇠p [f(x̄t, s)]� 0. (4)

The above lower bound and the limsup-bound (3) together prove the result. ⇤
From the above result and Theorem 3, we can observe that the dynamic regret, i.e., the average

gap between the best solution in hindsight of each round and the solution evaluated in the algo-

rithm, decreases at a rate of O(
p

h(T )/
p

T ) and tends to zero. Therefore, we are able to learn

the DRO solution over time with sublinear regret. At the same time, Algorithm 2 is applicable to

large-sized problems in contrast to the reformulated DRO problems (1) or (2).

3.2. Bounded Path Lengths

The following lemma illustrates the high-probability path lengths for the confidence intervals, the

kernel-based and l2-norm ambiguity sets.

Lemma 2. Given ambiguity sets of the form specified in Section 2, we have

1

2

TX

t=1

kpt � qtk
2
 h(T ),

for all pt 2 Pt�1, qt 2 P with probability at least 1� �. The functions h(T ) for di↵erent categories

of ambiguity sets are as given:

1. Confidence Intervals:

h(T ) = 8|S| log(⇡T )(1+ logT ).

2. Kernel based ambiguity sets:

h(T ) =
32C

�2
+

32C

�2
log

⇡T
p
6�

(1+ logT ),

where � denotes the smallest eigenvalue of the kernel matrix M .
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Lemma 2. Given ambiguity sets of the form specified in Section 2, we have
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where � denotes the smallest eigenvalue of the kernel matrix M .
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Here, the first inequality arises from Lemma 11. The second and third inequalities are from bound-

ing t and from observing that
PT

t=1(1/t) 1+ log(T ).
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From the above result and Theorem 3, we can observe that the dynamic regret, i.e., the average
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T ) and tends to zero. Therefore, we are able to learn

the DRO solution over time with sublinear regret. At the same time, Algorithm 2 is applicable to
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Numerical Experiments

Benchmark Libraries 

• MILPs and MIQPs from the MIPLIB set of benchmark Instances


• Comparisons against other methods

Optimal Route Choice 

• ChicagoSketch model from Transportation Networks library


• Illustration of impact on solutions

Distributionally Robust Network Design 

• Network design with uncertain demands. Instances by Altin et. al. (2007)



Benchmark Libraries

• Takes MILP and MIQP instances from MIPLIB library

• Objective uncertainty in the instances through scenarios  with (2, 10, 15)s ∈ 𝒮 |𝒮 | =

• Instances are of the form

f(x, s) = x⊤Qx + (c + s)⊤x + d



Benchmark Instances: Different Ambiguity Sets
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Benchmark Instances: Different Ambiguity Sets

The objective value shrinks for 
all set types

Fastest reduction for 
confidence intervals
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Benchmark Instances: Running Times

More time savings for large and 
non linear problems
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|S|= 10 |S|= 50

DRO 2.2s 3.5s
Wasserstein 0.4s 1.1s
DRBO 7.9s 30.9s

Online robust 0.3s 0.4s
Running SO 0.2s 0.2s

Table 2 Avg. running times for supportcase16, T = 100.

as the other methods. However, the online robust solution can be calculated more e�ciently than

the other DRO methods, cf. Table 2. Only the stochastic solutions with the MLE can be computed

faster. However they do not have solution quality guarantees under ambiguity and may lead to

a bad worst-case objective. Thus in total, the online robust method is preferable. The average

running times of all instances are given in Table 3 and support the observations. Indeed, using the

online robust approach, the instances all can be solved quickly within the time limit, whereas it

takes considerably longer for the other approaches that may already reach the time limit for some

instances.

MIP
|S|= 10

MIP
|S|= 50

MIQP
|S|= 2

DRO 45.6s 55.9s⇤ 271.4s⇤

Wassertein 52.3s 59.1s 299.9s
DRBO 42.7s⇤⇤ 66.1s⇤⇤ 738.3s⇤

Online robust 26.8s 27.1s 170.2s
Running SO 26.6s 26.9s 172.6s

Table 3 Avg. running times for benchmark instances. (
⇤
) One testcase could not be solved within one hour.

(
⇤⇤
) Four testcases could not be solved within one hour.

4.2. Network Design under Uncertainty

In addition to solving classical benchmark instances as performed in the last section, we next

study the solution of a practically very relevant and highly challenging combinatorial optimization

problem under uncertainy. Given an undirected graph G = (V,E), the goal of robust network

design (Cacchiani et al. 2016) is to compute a minimal cost network topology together with the

corresponding edge capacities f 2Z
|E|
+ in order to fulfill a given demand b 2Z|V |. The demand is

assumed to be uncertain and an element of the scenario set S := {b1, ..., b|S|} ⇢Z|V | with (unknown)

probability vector p⇤
2 [0,1]|S|. For every edge {i, j} 2 E and every scenario s 2 S, we are given

costs cijs > 0 and flow capacities dijs, d̄ij > 0. In this practical application, it can be assumed that

additional information on the demand distributions become available over time, so that a DRO

over time approach is a very natural modelling choice.
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design (Cacchiani et al. 2016) is to compute a minimal cost network topology together with the

corresponding edge capacities f 2Z
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+ in order to fulfill a given demand b 2Z|V |. The demand is

assumed to be uncertain and an element of the scenario set S := {b1, ..., b|S|} ⇢Z|V | with (unknown)

probability vector p⇤
2 [0,1]|S|. For every edge {i, j} 2 E and every scenario s 2 S, we are given

costs cijs > 0 and flow capacities dijs, d̄ij > 0. In this practical application, it can be assumed that
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Online robust methods are 
significantly faster



Distributionally Robust Network Design

• Compute minimum cost network topology and edge capacity to satisfy 
demand


• Demand is uncertain. Interval ambiguity sets.


• Instances 

• res8: V = 50, E = 77


• w1_100: V = 100, E = 207


• w1_200: V = 200, E = 775



Running Times

This means that the driver solves the shortest-path problem on a directed graph G à (V, A) with uncertain travel 
times c : A !R+. Let v1, v2 2 V be the origin and the destination, respectively. We assume that there is a finite set of 
traffic scenarios S à {c1, c2, : : : , c|S|} ⇢ R|A|

+ that correspond to different realizations of the travel times on the arcs, 
each materializing with an unknown probability p⇤k 2 [0, 1], k à 1, : : : , |S|.

In each round t à 1, : : : , T, (e.g., every morning when driving to work), the driver chooses a v1-v2-route given by 
the vector xt 2 {0, 1}|A|, which models the edges traveled, along the path chosen, in that round. The expected travel 
time in a round t 2 T is then given by 

P
s2Sp⇤shcs, xti. Because the true scenario distribution is unknown, the driver is 

assumed to solve the distributionally robust shortest-path problem in an online fashion, that is, using Algorithm 2.
In the following, we analyze the outcome of this experiment on an aggregated version of the real-world city net-

work of Chicago. It is available as instance ChicacoSketch in Ben Stabler’s library of transportation networks (Stabler 
et al. 2018) and has 933 nodes and 2,950 arcs (of which we ignore the 387 nodes representing “zones” as well as their 
incident arcs). In this data set, each arc a has a certain free-flow time cfree, a, which we assume to be the uncongested 
travel time. In addition, we generate nine congestion scenarios by perturbing cfree, a. We first choose v1 and v2 such 
that the driven path would span the entire extract of the city map. Now, for all arcs a, we uniformly draw 
cs, a ~ [0, 2cfree, a]. Finally, we uniformly draw a random “true” probability distribution p⇤ ~ P.

For the above setup, we use Algorithm 2 in order to let the driver iteratively adapt to the dynamically changing 
travel times. In Figure 4, we illustrate solution quality over time. In order to show the stability of our algorithm, we 
additionally repeat the experiments 10 times and plot their mean solution quality as well as their standard deviation. 
We observe that the online average and DRO average jointly converge toward the expected value of the minimum 
expected travel time. The regret tends to zero over the long run. The nonmonotonic behavior of the solution deter-
mined using the maximum likelihood estimator (running SO) is explained by the fact that the solutions have no pro-
tection against uncertainty. Therefore, the worst-case performance of these solutions fluctuates.

As an illustrative example, in Figure 5(a) and (b), one specific run is plotted to evaluate it in more detail. In these 
plots, one can see that in each of the rounds 1, 349, 860 and 3,661, long stretches of the chosen path are abruptly 
improved due to the discrete nature of the decisions. There are also visible jumps in the online robust and exact DRO 
solution quality.

Figure 3. (Color online) Results for res8 with |S| à 10 and T à 10,000 

Table 4. Average Running Times per Iteration Using Confidence Intervals

|S| Online robust Exact DRO

res8 10 0.2s 0.5s
res8 50 0.6s 11.6s
w1_100 10 0.3s 32.0s
w1_100 50 1.5s 95.6s
w1_200 10 1.2s 38.7s
w1_200 50 4.7s 1282.2s

Aigner et al.: DRO over Time 
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This means that the driver solves the shortest-path problem on a directed graph G à (V, A) with uncertain travel 
times c : A !R+. Let v1, v2 2 V be the origin and the destination, respectively. We assume that there is a finite set of 
traffic scenarios S à {c1, c2, : : : , c|S|} ⇢ R|A|

+ that correspond to different realizations of the travel times on the arcs, 
each materializing with an unknown probability p⇤k 2 [0, 1], k à 1, : : : , |S|.

In each round t à 1, : : : , T, (e.g., every morning when driving to work), the driver chooses a v1-v2-route given by 
the vector xt 2 {0, 1}|A|, which models the edges traveled, along the path chosen, in that round. The expected travel 
time in a round t 2 T is then given by 

P
s2Sp⇤shcs, xti. Because the true scenario distribution is unknown, the driver is 

assumed to solve the distributionally robust shortest-path problem in an online fashion, that is, using Algorithm 2.
In the following, we analyze the outcome of this experiment on an aggregated version of the real-world city net-

work of Chicago. It is available as instance ChicacoSketch in Ben Stabler’s library of transportation networks (Stabler 
et al. 2018) and has 933 nodes and 2,950 arcs (of which we ignore the 387 nodes representing “zones” as well as their 
incident arcs). In this data set, each arc a has a certain free-flow time cfree, a, which we assume to be the uncongested 
travel time. In addition, we generate nine congestion scenarios by perturbing cfree, a. We first choose v1 and v2 such 
that the driven path would span the entire extract of the city map. Now, for all arcs a, we uniformly draw 
cs, a ~ [0, 2cfree, a]. Finally, we uniformly draw a random “true” probability distribution p⇤ ~ P.

For the above setup, we use Algorithm 2 in order to let the driver iteratively adapt to the dynamically changing 
travel times. In Figure 4, we illustrate solution quality over time. In order to show the stability of our algorithm, we 
additionally repeat the experiments 10 times and plot their mean solution quality as well as their standard deviation. 
We observe that the online average and DRO average jointly converge toward the expected value of the minimum 
expected travel time. The regret tends to zero over the long run. The nonmonotonic behavior of the solution deter-
mined using the maximum likelihood estimator (running SO) is explained by the fact that the solutions have no pro-
tection against uncertainty. Therefore, the worst-case performance of these solutions fluctuates.

As an illustrative example, in Figure 5(a) and (b), one specific run is plotted to evaluate it in more detail. In these 
plots, one can see that in each of the rounds 1, 349, 860 and 3,661, long stretches of the chosen path are abruptly 
improved due to the discrete nature of the decisions. There are also visible jumps in the online robust and exact DRO 
solution quality.

Figure 3. (Color online) Results for res8 with |S| à 10 and T à 10,000 

Table 4. Average Running Times per Iteration Using Confidence Intervals

|S| Online robust Exact DRO

res8 10 0.2s 0.5s
res8 50 0.6s 11.6s
w1_100 10 0.3s 32.0s
w1_100 50 1.5s 95.6s
w1_200 10 1.2s 38.7s
w1_200 50 4.7s 1282.2s
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This means that the driver solves the shortest-path problem on a directed graph G à (V, A) with uncertain travel 
times c : A !R+. Let v1, v2 2 V be the origin and the destination, respectively. We assume that there is a finite set of 
traffic scenarios S à {c1, c2, : : : , c|S|} ⇢ R|A|

+ that correspond to different realizations of the travel times on the arcs, 
each materializing with an unknown probability p⇤k 2 [0, 1], k à 1, : : : , |S|.

In each round t à 1, : : : , T, (e.g., every morning when driving to work), the driver chooses a v1-v2-route given by 
the vector xt 2 {0, 1}|A|, which models the edges traveled, along the path chosen, in that round. The expected travel 
time in a round t 2 T is then given by 

P
s2Sp⇤shcs, xti. Because the true scenario distribution is unknown, the driver is 

assumed to solve the distributionally robust shortest-path problem in an online fashion, that is, using Algorithm 2.
In the following, we analyze the outcome of this experiment on an aggregated version of the real-world city net-

work of Chicago. It is available as instance ChicacoSketch in Ben Stabler’s library of transportation networks (Stabler 
et al. 2018) and has 933 nodes and 2,950 arcs (of which we ignore the 387 nodes representing “zones” as well as their 
incident arcs). In this data set, each arc a has a certain free-flow time cfree, a, which we assume to be the uncongested 
travel time. In addition, we generate nine congestion scenarios by perturbing cfree, a. We first choose v1 and v2 such 
that the driven path would span the entire extract of the city map. Now, for all arcs a, we uniformly draw 
cs, a ~ [0, 2cfree, a]. Finally, we uniformly draw a random “true” probability distribution p⇤ ~ P.

For the above setup, we use Algorithm 2 in order to let the driver iteratively adapt to the dynamically changing 
travel times. In Figure 4, we illustrate solution quality over time. In order to show the stability of our algorithm, we 
additionally repeat the experiments 10 times and plot their mean solution quality as well as their standard deviation. 
We observe that the online average and DRO average jointly converge toward the expected value of the minimum 
expected travel time. The regret tends to zero over the long run. The nonmonotonic behavior of the solution deter-
mined using the maximum likelihood estimator (running SO) is explained by the fact that the solutions have no pro-
tection against uncertainty. Therefore, the worst-case performance of these solutions fluctuates.

As an illustrative example, in Figure 5(a) and (b), one specific run is plotted to evaluate it in more detail. In these 
plots, one can see that in each of the rounds 1, 349, 860 and 3,661, long stretches of the chosen path are abruptly 
improved due to the discrete nature of the decisions. There are also visible jumps in the online robust and exact DRO 
solution quality.

Figure 3. (Color online) Results for res8 with |S| à 10 and T à 10,000 

Table 4. Average Running Times per Iteration Using Confidence Intervals

|S| Online robust Exact DRO

res8 10 0.2s 0.5s
res8 50 0.6s 11.6s
w1_100 10 0.3s 32.0s
w1_100 50 1.5s 95.6s
w1_200 10 1.2s 38.7s
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This means that the driver solves the shortest-path problem on a directed graph G à (V, A) with uncertain travel 
times c : A !R+. Let v1, v2 2 V be the origin and the destination, respectively. We assume that there is a finite set of 
traffic scenarios S à {c1, c2, : : : , c|S|} ⇢ R|A|

+ that correspond to different realizations of the travel times on the arcs, 
each materializing with an unknown probability p⇤k 2 [0, 1], k à 1, : : : , |S|.

In each round t à 1, : : : , T, (e.g., every morning when driving to work), the driver chooses a v1-v2-route given by 
the vector xt 2 {0, 1}|A|, which models the edges traveled, along the path chosen, in that round. The expected travel 
time in a round t 2 T is then given by 

P
s2Sp⇤shcs, xti. Because the true scenario distribution is unknown, the driver is 

assumed to solve the distributionally robust shortest-path problem in an online fashion, that is, using Algorithm 2.
In the following, we analyze the outcome of this experiment on an aggregated version of the real-world city net-

work of Chicago. It is available as instance ChicacoSketch in Ben Stabler’s library of transportation networks (Stabler 
et al. 2018) and has 933 nodes and 2,950 arcs (of which we ignore the 387 nodes representing “zones” as well as their 
incident arcs). In this data set, each arc a has a certain free-flow time cfree, a, which we assume to be the uncongested 
travel time. In addition, we generate nine congestion scenarios by perturbing cfree, a. We first choose v1 and v2 such 
that the driven path would span the entire extract of the city map. Now, for all arcs a, we uniformly draw 
cs, a ~ [0, 2cfree, a]. Finally, we uniformly draw a random “true” probability distribution p⇤ ~ P.

For the above setup, we use Algorithm 2 in order to let the driver iteratively adapt to the dynamically changing 
travel times. In Figure 4, we illustrate solution quality over time. In order to show the stability of our algorithm, we 
additionally repeat the experiments 10 times and plot their mean solution quality as well as their standard deviation. 
We observe that the online average and DRO average jointly converge toward the expected value of the minimum 
expected travel time. The regret tends to zero over the long run. The nonmonotonic behavior of the solution deter-
mined using the maximum likelihood estimator (running SO) is explained by the fact that the solutions have no pro-
tection against uncertainty. Therefore, the worst-case performance of these solutions fluctuates.

As an illustrative example, in Figure 5(a) and (b), one specific run is plotted to evaluate it in more detail. In these 
plots, one can see that in each of the rounds 1, 349, 860 and 3,661, long stretches of the chosen path are abruptly 
improved due to the discrete nature of the decisions. There are also visible jumps in the online robust and exact DRO 
solution quality.
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This means that the driver solves the shortest-path problem on a directed graph G à (V, A) with uncertain travel 
times c : A !R+. Let v1, v2 2 V be the origin and the destination, respectively. We assume that there is a finite set of 
traffic scenarios S à {c1, c2, : : : , c|S|} ⇢ R|A|

+ that correspond to different realizations of the travel times on the arcs, 
each materializing with an unknown probability p⇤k 2 [0, 1], k à 1, : : : , |S|.

In each round t à 1, : : : , T, (e.g., every morning when driving to work), the driver chooses a v1-v2-route given by 
the vector xt 2 {0, 1}|A|, which models the edges traveled, along the path chosen, in that round. The expected travel 
time in a round t 2 T is then given by 

P
s2Sp⇤shcs, xti. Because the true scenario distribution is unknown, the driver is 

assumed to solve the distributionally robust shortest-path problem in an online fashion, that is, using Algorithm 2.
In the following, we analyze the outcome of this experiment on an aggregated version of the real-world city net-

work of Chicago. It is available as instance ChicacoSketch in Ben Stabler’s library of transportation networks (Stabler 
et al. 2018) and has 933 nodes and 2,950 arcs (of which we ignore the 387 nodes representing “zones” as well as their 
incident arcs). In this data set, each arc a has a certain free-flow time cfree, a, which we assume to be the uncongested 
travel time. In addition, we generate nine congestion scenarios by perturbing cfree, a. We first choose v1 and v2 such 
that the driven path would span the entire extract of the city map. Now, for all arcs a, we uniformly draw 
cs, a ~ [0, 2cfree, a]. Finally, we uniformly draw a random “true” probability distribution p⇤ ~ P.

For the above setup, we use Algorithm 2 in order to let the driver iteratively adapt to the dynamically changing 
travel times. In Figure 4, we illustrate solution quality over time. In order to show the stability of our algorithm, we 
additionally repeat the experiments 10 times and plot their mean solution quality as well as their standard deviation. 
We observe that the online average and DRO average jointly converge toward the expected value of the minimum 
expected travel time. The regret tends to zero over the long run. The nonmonotonic behavior of the solution deter-
mined using the maximum likelihood estimator (running SO) is explained by the fact that the solutions have no pro-
tection against uncertainty. Therefore, the worst-case performance of these solutions fluctuates.

As an illustrative example, in Figure 5(a) and (b), one specific run is plotted to evaluate it in more detail. In these 
plots, one can see that in each of the rounds 1, 349, 860 and 3,661, long stretches of the chosen path are abruptly 
improved due to the discrete nature of the decisions. There are also visible jumps in the online robust and exact DRO 
solution quality.

Figure 3. (Color online) Results for res8 with |S| à 10 and T à 10,000 

Table 4. Average Running Times per Iteration Using Confidence Intervals

|S| Online robust Exact DRO

res8 10 0.2s 0.5s
res8 50 0.6s 11.6s
w1_100 10 0.3s 32.0s
w1_100 50 1.5s 95.6s
w1_200 10 1.2s 38.7s
w1_200 50 4.7s 1282.2s

Aigner et al.: DRO over Time 
16 INFORMS Journal on Optimization, Articles in Advance, pp. 1–19, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

00
1:

9e
8:

34
4e

:8
80

0:
81

e4
:1

35
1:

df
45

:b
fd

4]
 o

n 
26

 M
ay

 2
02

3,
 a

t 0
5:

13
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Optimal Route Choice

• Choose the shortest paths in a street 
network with uncertain arc times

Aigner et al.: Distributionally Robust Optimization over Time
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(a) True stochastic solution (b) Round 0

(c) Round 1

optimal path, i.e. , the optimal path w.r.t. the unperturbed cost vector. We see two subtours in

which the path di↵ers from the true stochastic solution. In the following iterations, there remain

two deviating subtours, but they change slightly in round 1 and round 349. In round 1879, one

of these subtours disappears, and after round 3661 the solution coincides with the true stochastic

optimum.

Altogether, this example shows how DRO can be used to improve performance in the face

of uncertainty by leveraging information arriving over time. At the beginning, with no or little

• Model: ChicagoSketch with 933 
nodes and 2950 arcs

• Randomly generated true probability 
distribution for arcs lengths

• Solving directly eliminates structure
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(a) Evolution of worst-case expected objective averaged

over ten examples.

(b) Convergence of online robust and DRO solutions aver-

aged over ten examples.

Figure 4 The outcome of Algorithm 2 for learning an optimal route choice in terms of solution quality over

time for T = 5000.
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(b) Convergence of online robust and DRO solutions for

a single example.

Figure 5 The outcome of Algorithm 2 for single runs that correspond to the routes given in Figure 6.

average and DRO average jointly converge towards the expected value of the minimum expected

travel time. The regret tends to zero over the long run.

As an illustrative example, in Figures 5(a) and 5(b), one specific run is plotted to evaluate it

in more detail. In these plots, one can see that in each of the rounds 1, 349, 860 and 3661, long

stretches of the chosen path are abruptly improved. There are also visible jumps in the online

robust solution quality.

In Figure 6, we depict how route choice evolve over the rounds t 2 T ; introducing a new picture

whenever a structurally new solution is found. At the beginning, the driver takes the nominally
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Continuous decrease in objective value but discrete 
jumps due to changing solution



Conclusions

• Method for optimization under uncertainty which combines learning and 
Distributionally Robust Optimization


• Iterative algorithm for solution of problem which avoid large formulations and 
maintains structure


• Theoretical proofs of convergence and solution quality


• Numerical illustrations for the results
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