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Motivation

Other problems leveraging decision dependence

I Facility location problems

I The impact of facility on demand may be uncertain

I Information based interpretation

I If the decision being made is the collection of additional
information its affect are uncertain by definition

I Reduction based interpretation

I The amount of reduction is uncertain
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Mathematical Model

Standard Uncertainty Set

U =

{
d :

∑
j∈N

|dj − d̄j |
d̂j

≤ Γ
√
N, dj ∈ [d̄j − Γd̂j , d̄j + Γd̂j ] ∀j ∈ N

}

Decision Dependent Uncertainty Set

U(y,γ) =

{
d :

∑
j∈N

|dj − d̄j |
d̂j

≤ Γ
√
N

dj ∈ [d̄j − Γd̂j , d̄j + (Γ− γjyj)d̂j ]

}

How do we choose γ?
γj : reduction parameter
zj : reduction decision
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Describing γ

Information about uncertain γ can be described through sets or
distributions. For example,

Set based information γ ∈ G
I Interval Sets:

G = {γ : γ ≤ γ ≤ γ}

Distributional uncertainty γ ∼ G
I Finite distribution:

G : P [γ = γs] = πs ∀s = 1, . . . , Ns
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Set based information: Robust formulation

min
x∈X,y∈Y

{
b>x + r>y + max

d∈U(y,γ)
min

z∈Ω(x,d)
c>z

}
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Distribution information: Stochastic
Formulation

min
x∈X,y∈Y

{
b>x + r>y + Eγ

[
max

d∈U(y,γ)
min

z∈Ω(x,d)
c>z

]}

I Uncertain reduction described set of scenarios of size Ns

min
x∈X,y∈Y

{
b>x + r>y +

1

Ns

Ns∑
s=1

πs

[
max

d∈U(y,γs)
min

z∈Ω(x,d)
c>z

]}

I Solve using an affine policy approach

I Leads to separate policy for each scenario
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Unit Commitment

Day ahead unit commitment with uncertain loads

I 15 buses

I Ng = 9 generators (index i)

I Nd = 11 loads (index j)

I T = 12 hours (index t)

A new decision is introduced which allows to reduce the maximum
possible load for a price.
The amount of maximum load reduced is uncertain.
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Implementation

Load Uncertainty set

U(z, γ) =

∑
j∈N

|dj − d̄j |
d̂j

≤ Γ
√
N, dj ∈ [d̄j − Γd̂j , d̄j + (Γ− γ z)d̂j ]



I Only one reduction parameter γ and decision z

I Γ = 2

I Price of Reduction = 10/load/time

I d̂j = 10% of d̄j

The unit commitment problem uses the following

I Unit commitment model from Lorca et al. [1]

I Decision dependent uncertainty model from Nohadani and
Sharma [2]
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Solution

I Second stage power generation decisions modeled as affine
functions of the realized load given by
zit = wit +Wit

∑
j∈Nd

djt

I Constraints involving load are

1. Demand Satisfaction constraints
2. Capacity constraints
3. Ramping constraints
4. Line flow constraints
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Power Balance Constraints

Proposition 3 [Lorca et al. [1]]∑
i∈Ng

wit = 0,
∑
i∈Ng

Wit = 1 ∀t ∈ T

Proposition 3 reformulates the power balance constraints as
described above. It can be extended to decision dependent
uncertainty sets.
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Capacity Constraints

Capacity constraints are of the following general form

cit
∑
j∈Nd

djt ≤ hit ∀d ∈ U(y)

We use the results from Nohadani and Sharma [2] to write the
robust problem.
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∑
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djt ≤ hit ∀d ∈ U(y)

We use the results from Nohadani and Sharma [2] to write the
robust problem.

cit

Nd∑
j=1

(djt − Γd̂jt) + max
χ,ζ

Nd∑
j=1

((cit −Mz)χjt + citζjt)

s.t.

Nd∑
j=1

|χjt + ζjt − Γd̂jt|
d̂jt

≤ Γ
√
Nd

0 ≤ ζjt ≤ 2Γd̂jt − d̂jtγjt ∀j
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Capacity Constraints

Capacity constraints are of the following general form

cit
∑
j∈Nd

djt ≤ hit ∀d ∈ U(y)

We use the results from Nohadani and Sharma [2] to write the
robust problem.

I z can be either be 0 or 1.

I cit can be >= 0 or < 0.

I Leads to 4 possible combinations. The worst case scenarios
can be pre-computed the the corresponding cuts generated
without iterative cut generation.
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Ramping and Line Flow Constraints

In the current model the ramping and line flow constraints are
generated using the cut generation algorithm similar to the
capacity constraints.
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Results

Model G Reduced Obj Change

Nominal 103926.4

Robust 0 115516.2 11.15%

DDU Fixed 0.5 Yes 114557.5 10.23%

DDU Robust 1 [0.4, 0.6] Yes 115216.6 10.86%

DDU Robust 2 [0.3, 0.7] No 115516.2 11.15%

DDU Stoch. 1 {0.4, 0.5, 0.6} Yes 114371.3 10.05%

DDU Stoch. 2 {0.3, 0.5, 0.7} Yes 114083.3 9.77%
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Conclusions

I Results illustrate how the problem of uncertain reductions can
be tackled

I Using cut generation algorithms and exploiting the structure
of uncertainty sets provides scalability for both Robust and
Stochastic setting.

I Our goal in the future is to solve the problem for larger
dimensions.

kartikeysharma2014@u.northwestern.edu
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