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Motivation

I Uncertain parameters correlated over time in many problems.

I Examples:

I Auto-correlated demand in an inventory management problem
I Auto-correlated returns in a portfolio optimization problems.

I Robust Optimization across multiple periods: Separate
uncertainty sets for each period

I Does not capture correlation
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Connected Uncertainty Sets

I Implicitly present in uncertainty sets across multiple periods.

I This project focuses on explicit dependence.

The parameters of the uncertainty set at each period are a
function of past realizations.
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Past Work

I Scenario Tress:Infanger and Morton [1996], De Queiroz and
Morton [2013]

I RO: Zhao and Zeng [2012], Jiang et al. [2012], Bertsimas and
Vayanos [2015], Lorca and Sun [2015,2017], and Nohadani
and Roy [2017].

I DRO: Analui and Pflug [2014], Xin and Goldberg [2015]
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RO Example

Consider

max
x1,x2

c>1 x1 + c>2 x2

s.t. d>
1 x1 + d>

2 x2 ≤ B ∀d2 ∈ U2(d1) ∀d1 ∈ U1
x1,x2 ∈ X

Uncertainty for d2 explicitly depends on d1.

I Ellipsoid

U2(d1) = {d2 | d2 = µ2(d1) + L2u2 : ‖u2‖2 ≤ r2}

I Center

µ2(d1) = A2µ1(d0) + F2d1 + c2
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DRO Example

sup
P1∈Ũ1

E
d1∼P1

[
d>
1 x1

]
≤ B. (DRO)

Ũ2(d1) =

{
P2|1 ∈M(Ξ2)

∣∣∣ ∣∣EP2|1 [d2]− µ2(d1)
∣∣ ≤ δ2, EP2|1 [(d2 − µ0

2)(d2 − µ0
2)

>] � Σ2

}
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Benefits of CU Sets
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Benefits of CU Sets

(a) Uncertainty Realizations

T

d

1 2 3

Northwestern INFORMS 7/15



Benefits of CU Sets

(b) Fixed Uncertainty Sets
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Benefits of CU Sets

(c) Growing Uncertainty Sets
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Benefits of CU Sets

(d) Connected Uncertainty Sets
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I Provides better coverage of uncertainty realizations

I Incorporates information about structure of uncertainty
realizations.
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DRO: Insights

E

[
T∑
t=1

ht(xt,dt)

]
≤ B

I Robust counterpart

sup
P1∈Ũ1

EP1

h1 + sup
P2|1∈Ũ2(d1)

EP2|1

h2 + · · ·+ sup
PT |T−1∈ŨT (dT−1)

{
EPT |T−1

[hT ]
}

 ≤ B.
I Each nested sup is a concave function dt.

I Reformulate as infinite dimensional optimization problem.

I IOP

conser. approx.−−−−−−−−−→ Semi-infinite opt. prob.
ellips. support−−−−−−−−→ SDP

I Conserv. Approx. ⇔ approximating sup by a linear function
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Portfolio Optimization: Model

I Two period portfolio optimization problem

max
x1,x2

min
P∈U

EP [u(r>1 x1) + u(r>2 x2)]

s.t.
n∑

i=1

x1i = 1

n∑
i=1

x2i = 1

x1,x2 ≥ 0

I Maximize u(z) = min{1.5z, 0.015 + z, 0.06 + 0.2z}
I 2 Stocks

I Moment based uncertainty set. µ2(r1) = ωr1 + (1− ω)µ1

I µ1 = [0.06, 0.03], σ2 = 0.005 for both assets
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Portfolio Optimization: Objective

DRO

−1

−0.6

−0.2

0.2

0.6

1

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2
Correlation over time

A
ss

e
t 

C
o

rr
e

la
tio

n

−0.03
−0.01
0.01
0.03
0.05

objective

Northwestern INFORMS 11/15



Portfolio Optimization: Objective

CU

−1

−0.6

−0.2

0.2

0.6

1

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2
Correlation over time

A
ss

e
t 

C
o

rr
e

la
tio

n

−0.03
−0.01
0.01
0.03
0.05

objective

Northwestern INFORMS 11/15



Portfolio Optimization: Objective

DRO

−1

−0.6

−0.2

0.2

0.6

1

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2
Correlation over time

A
ss

e
t 

C
o

rr
e

la
tio

n

−0.03
−0.01
0.01
0.03
0.05

objective

CU

−1

−0.6

−0.2

0.2

0.6

1

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2
Correlation over time

A
ss

e
t 

C
o

rr
e

la
tio

n

−0.03
−0.01
0.01
0.03
0.05

objective

Objective value decreases with asset correlation and correlation
over time.
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Portfolio Optimization: Realized Wealth
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correlation over time.
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Portfolio Optimization: Wealth Standard Deviation

DRO - CU
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Conclusions

I In many problems, uncertainty depends on past realizations.

I Connected uncertainty sets incorporate this behavior and lead
to less variable solutions.

I The reformulated problems are difficult → decision rules and
conservative approximations.
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RO: Insights

T∑
t=1

d>
t xt ≤ B

I Linear constraints with polyhedral or ellipsoidal uncertainty
sets are reformulated as LPs and SOCPs.
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Robust Knapsack

I Two period knapsack problem with uncertain weight
coefficients.

min
x1,x2

c>1 x1 + c>2 x2

s.t. d>
1 x1 + d>

2 x2 ≤ B ∀d2 ∈ U2(d1) ∀d1 ∈ U1
x1,x2 ∈ X

I Ellipsoidal uncertainty sets. Parameters from samples.

I Solution quality evaluated on new uncertainty samples.

I Performance evaluated with Normal and Lognormal
distributions.
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Robust Knapsack
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Proposition

Given the sets Ũ1, . . . , ŨT (dT−1), the robust counterpart of constraint

E
[

T∑
t=1

ht(xt, ξt)

]
≤ B is

sup
P1∈Ũ1

EP1

[
h1(x1,d1) + sup

P2|1∈Ũ2(d1)

{
EP2|1

[
h2(x2,d2) + · · ·+

sup
PT |T−1∈ŨT (dT−1)

{
EPT |T−1

[
hT (xT ,dT )

]}]}]
≤ B.
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