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» Uncertain parameters correlated over time in many problems.
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Motivation

» Uncertain parameters correlated over time in many problems.
» Examples:

» Auto-correlated demand in an inventory management problem
» Auto-correlated returns in a portfolio optimization problems.

» Robust Optimization across multiple periods: Separate
uncertainty sets for each period

» Does not capture correlation
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Connected Uncertainty Sets

» Implicitly present in uncertainty sets across multiple periods.

Example : Ellipsoid Uncertainty set can be expressed as
combination of two uncertainty sets.

U={d=(di,dy) | [|d]l2 < p}

where

U = {dl | |da| < P} Uz(dy) = {dz | |d2| < 4/p? — d%}
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Connected Uncertainty Sets

> Implicitly present in uncertainty sets across multiple periods.

» This project focuses on explicit dependence.

The parameters of the uncertainty set at each period are a
function of past realizations.
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Past Work

» Scenario Tress:Infanger and Morton [1996], De Queiroz and
Morton [2013]

» RO: Zhao and Zeng [2012], Jiang et al. [2012], Bertsimas and
Vayanos [2015], Lorca and Sun [2015,2017], and Nohadani
and Roy [2017].

» DRO: Analui and Pflug [2014], Xin and Goldberg [2015]
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RO Example

Consider
max cirxl + c;—x2
X1,%X2

st.d{x; +djxo < B Vdy € Uy(d;) Vdy €Uy

X1,X2€X

Uncertainty for ds explicitly depends on dj.

NORTHWESTERN INFORMS 5/15



RO Example

Consider
max clTxl + c;—x2
X1,%X2

st.d{x; +djxo < B Vdy € Uy(d;) Vdy €Uy

X1,X2€X

Uncertainty for ds explicitly depends on dj.
» Ellipsoid

Us(dy) = {d2 | da = pa(di) + Lous : ||uz|l2 < 72}
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RO Example

Consider
max cirxl + c;—XQ
X1,%X2

st.d{x; +djxo < B Vdy € Uy(d;) Vdy €Uy

X1,X2€X

Uncertainty for ds explicitly depends on dj.
» Ellipsoid

Us(dy) = {d2 | da = pa(di) + Lous : ||uz|l2 < 72}
» Center

po(dr) = Aoy (do) + Fady + c2
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sup By _p [dfxl] < B. (DRO)
Prel
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sup By _p [del] < B. (DRO)
Pielth

Z:?l = {Pl S M(El)

[Ep[di] — p1] < 61, Epy[(di — pa)(di — 1) "] < 21},
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DRO Example

sup E, . {lexﬁ— sup E, [dQ xQ” < B. (DRO)
Pielh Pyclda(dr)

Z;fl {Ple/\/lE

|Ep [di] — p1| < 81, Ep[(dy — pa)(dy — 1) ] 2 21},

Us(dy) = {qu € M(E“z)‘ |Epy, [do] — pa(d1)| < 82, Epy, [(d2 — p9)(do — p3) '] < 22}
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Benefits of CU Sets

(a) Uncertainty Realizations

d
A
I I I > T
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Benefits of CU Sets

d (b) Fixed Uncertainty Sets
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Benefits of CU Sets

(c) Growing Uncertainty Sets

>
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Benefits of CU Sets

(d) Connected Uncertainty Sets

>
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Benefits of CU Sets

d (a) Uncertainty Realizations d (b) Fixed Uncertainty Sets
A A
t } —> T t } ——> 7
1 2 3 1 2 3
d (c) Growing Uncertainty Sets d (d) Connected Uncertainty Sets
A A
- d: -
. .,_=-=-’:I_ [ a?? b .._=-=\-‘:r
= = ps(dz)
141 H1 H1
U Us 128 Uz (dy) Us(dz)
Us
t } —> T } } —> 7
1 2 3 1 2 3
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Benefits of CU Sets

d (a) Uncertainty Realizations d (b) Fixed Uncertainty Sets
A A
} } —>T } } —> T
1 2 3 1 2 3
d (c) Growing Uncertainty Sets d (d) Connected Uncertainty Sets
A N
o= | d» -z
_ = o -—-I_ Ld, T T --r
ps(dz)
141 H1 H1
t 73 U Up(dy) Us(da)
Us
t } —> T } } —> 7
1 2 3 2 3

1
» Provides better coverage of uncertainty realizations
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Benefits of CU Sets

d (a) Uncertainty Realizations d (b) Fixed Uncertainty Sets
A A
+ + —— 7 + + ——> 7
1 2 3 1 2 3
d (c) Growing Uncertainty Sets d (d) Connected Uncertainty Sets
A A
P | d> _ =
_ L s ST
Hs(dz)
141 H1 H1
th 7 U Up(dy) Us(dz)
Us
} } —> T } } —— 7
1 2 3

1 2 3
» Provides better coverage of uncertainty realizations

» Incorporates information about structure of uncertainty
realizations.
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E <B

T
> hi(xi,dy)
=1
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DRO: Insights

T
E|> hi(xi,di)| <B
t=1

» Robust counterpart
Pieth

Pyj1 €Uz (ds Ppjp_ €Uz (dr=1)

NORTHWESTERN INFORMS

sup Ep, |:h1 + sup {IEP21 |:h2 +.--4 sup {IEPT\T—l [hT]}:| }} < B.
)

9/15



DRO: Insights

T

E|> hi(xi,di)| <B
t=1

» Robust counterpart
Pieth

qué%(dl PT\T—IEZ;T<dT—1)

» Each nested sup is a concave function d;.
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DRO: Insights

T

E|> hi(xi,di)| <B
t=1

» Robust counterpart

sup Ep, |h1 + sup Ep,, |he+---+ sup {IEPT\T—I [hT]} < B.
Prel Pyj1€Ua(d1) Prip_1€Ur(dr-1)

» Each nested sup is a concave function d;.

» Reformulate as infinite dimensional optimization problem.
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T
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DRO: Insights

T
E|> hi(xi,di)| <B

t=1

v

Robust counterpart

sup Ep, [h1 + sup Ep,, |he+---+ sup {IEPT‘P1 [hT]} < B.
Preth Py €U (d1) Prjp_1€Ur(dr-1)

Each nested sup is a concave function d;.

v

v

Reformulate as infinite dimensional optimization problem.

conser. approx. ellips. support
Iop ——— —_—

v

Semi-infinite opt. prob. SDP
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DRO

Insights

T

E|> hi(xi,di)| <B
t=1

Robust counterpart

sup Ep, |h1 + sup Ep,, |he+---+ sup {IEPTUL1 [hT]} < B.
Prel Pyj1€Ua(d1) Prip_1€Ur(dr-1)

Each nested sup is a concave function d;.

Reformulate as infinite dimensional optimization problem.

IOP SDP
Conserv. Approx. < approximating sup by a linear function

conser. approx. ellips. support
_—

Semi-infinite opt. prob.
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Portfolio Optimization: Model

» Two period portfolio optimization problem

: T T
max min B, [u(ry x1) + u(r; x2)]
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Portfolio Optimization: Model

» Two period portfolio optimization problem

: T T
max min B, fu(r x1) + u(r] x2)

» Maximize u(z) = min{1.52z,0.015 + z,0.06 + 0.2z}
» 2 Stocks
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Portfolio Optimization: Model

» Two period portfolio optimization problem

T T
max min B, [u(ry x1) + u(r; x2)]

» Maximize u(z) = min{1.52z,0.015 + z,0.06 + 0.2z}
» 2 Stocks

» Moment based uncertainty set. po(ry) =wry + (1 —w)py
» py = [0.06,0.03],0% = 0.005 for both assets
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Portfolio Optimization: Objective

DRO
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Cu

objective
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Portfolio Optimization: Objective

DRO
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Portfolio Optimization: Objective

DRO

06 0.6
c . . c . .
2 objective 8 objective
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Correlation over time Correlation over time

Objective value decreases with asset correlation and correlation
over time.
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Portfolio Optimization: Re—

DRO Ccu
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Portfolio Optimization:

DRO
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Average realized wealth increases with asset correlation and

correlation over time.

NORTHWESTERN

INFORMS

13/15



Portfolio Optimization: Wealth Standa_

DRO - CU
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Portfolio Optimization: Wealth Standard _

DRO - CU

wealth

2
Il

0

-1

Asset Correlation

Ly 16 -12 08 -04 0 04 0.
Correlation over time

08 12 16 2

Benefit of CU increases with correlation over time. It achieves a
peak for an asset correlation value 0.4-0.5
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> In many problems, uncertainty depends on past realizations.
» Connected uncertainty sets incorporate this behavior and lead
to less variable solutions.

» The reformulated problems are difficult — decision rules and
conservative approximations.

wealth

2 .
l1 Kartikey Sharma
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kartikeysharma2014@u.northwestern.edu
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RO: Insights

T
Zd;rxt S B
t=1

NORTHWESTERN ~ INFORMS 3/0



RO: Insights

T
Zd;rxt S B
t=1

» Linear constraints with polyhedral or ellipsoidal uncertainty
sets are reformulated as LPs and SOCPs.
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Robust Knapsack

» Two period knapsack problem with uncertain weight
coefficients.

min clTxl + CQTXQ

X1,X2
st.d{x; +dgxo < B Vdy € Up(dy) Vd; €Uy
X1,Xo € X
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Robust Knapsack

» Two period knapsack problem with uncertain weight
coefficients.

min clTxl + CQTXQ
X1,X2

st.d{ x; +djxo < B Vdy € Up(dy) Vdy €Uy
X1,Xo € X

» Ellipsoidal uncertainty sets. Parameters from samples.
» Solution quality evaluated on new uncertainty samples.

» Performance evaluated with Normal and Lognormal
distributions.
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Robust Knapsack
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» Better constraint satisfaction
value.
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Robust Knapsack
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» Better constraint satisfaction at the price of lower objective
value.
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Robust Knapsack
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» Better constraint satisfaction at the price of lower objective
value.
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Proposition

Given the sets L~{1, ...,Ur(dr—1), the robust counterpart of constraint

E Lé ht(xt,gt)} < B'is

sup Epl[hl(xladl)Jr sup {Epzu[hz(X2,dz)+-~-+
Piely Py €U2(d1)

o (B irtran)] )} < 8

PT\T—IEZ}T(dT—l)
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