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Connected Uncertainty Sets

I Current uncertainty realization ξ1 → future realizations ξ2.

I Implicitly present in uncertainty sets spanning multiple
periods.

I This project focuses on explicit dependence.

The parameters of the uncertainty set at each period are a
function of past realizations.
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Connected Uncertainty Sets

I Current uncertainty realization ξ1 → future realizations ξ2.

I Implicitly present in uncertainty sets spanning multiple
periods.

I This project focuses on explicit dependence.

Example : Ellipsoid Uncertainty set can be expressed as
combination of two uncertainty sets.

U = {ξ = (ξ1, ξ2) | ‖ξ‖2 ≤ ρ}
= {ξ = (ξ1, ξ2) | ξ1 ∈ U1, ξ2 ∈ U2(ξ1)}

where

U1 =

{
ξ1 | |ξ1| ≤ ρ

}
U2(ξ1) =

{
ξ2 | |ξ2| ≤

√
ρ2 − ξ21

}

The parameters of the uncertainty set at each period are a
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Past Work

I Scenario Tress:Infanger and Morton [1996], De Queiroz and
Morton [2013]

I RO: Zhao and Zeng [2012], Jiang et al. [2012], Bertsimas and
Vayanos [2015], Lorca and Sun [2015,2017], and Nohadani
and Roy [2017].

I DRO: Analui and Pflug [2014], Xin and Goldberg [2015]
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RO Example

Consider

max
x1,x2

c>1 x1 + c>2 x2

s.t. d>1 x1 + d>2 x2 ≤ B ∀d2 ∈ U2(d1) ∀d1 ∈ U1
x1,x2 ∈ X

Uncertainty for d2 explicitly depends on d1.

I Ellipsoid

U2(d1) = {d2 | d2 = µ2(d1) + L2u2 : ‖u2‖2 ≤ r2}, (E)

I Center

µ2(d1) = A2µ1(d0) + F2d1 + c2,
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DRO Example

sup
P1∈Ũ1

E
d1∼P1

[
d>1 x1

]
≤ B. (DRO)

Ũ2(d1) =

{
P2|1 ∈M

∣∣∣P2|1(dt ∈ Ξ2) = 1, µ
2
(d1) ≤ EP2|1 [d2] ≤ µ2(d1),

EP2|1 [(d2 − µ2(d1))(d2 − µ2(d1))
>] � Σ2(d1)

}
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Ũ1 =

{
P1 ∈M

∣∣∣P1(d1 ∈ Ξ1) = 1, µ
1
≤ EP1 [d1] ≤ µ1,

EP1 [(d1 − µ1)(d1 − µ1)
>] � Σ1

}
,
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DRO Example
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Why do this?

Fixed Uncertainty Set

U1 = U2 = U3 = [µ1 − δ, µ1 + δ]

T

d

U1

µ1

1

U2

µ1

2

U3

µ1

3

Connected Uncertainty Set

Ui = [µi(di−1)− δ, µi(di−1) + δ]

µi(di−1) = 0.7µi−1(di−2) + 0.3di−1

T

d

d̂1

d̂2

U1

µ1

1

U2(d1)

µ2(d1)

2

U3(d2)

µ3(d2)

3

I Provides better coverage of uncertainty realizations

I Incorporates information about structure of uncertainty
realizations.

I Provides framework for updating uncertainty sets if desired.
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RO: Insights

T∑
t=1

d>t xt ≤ B

I Linear constraints with polyhedral or ellipsoidal uncertainty
sets are reformulated as LPs and SOCPs.
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DRO: Insights

E

[
T∑
t=1

ht(xt, ξt)

]
≤ B

I DRO problems with moment CU sets are reformulated as
infinite dimensional problems.

I Infinite dimensional problem are conservatively approximated
by limiting number of variables.
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Portfolio Optimization

I Two period portfolio optimization problem

max
x1,x2

min
P∈U

E[u(r>1 x1) + u(r>2 x2)]

s.t.
n∑

i=1

x1i = 1

n∑
i=1

x2i = 1

x1, x2 ≥ 0

I Maximize u(z) = mink akz + bk
I 5 Stocks from Yahoo Finance

I Moment based uncertainty set. µ2(d1) = µ0 + Aµ1 + Bd1

I Estimate performance of solutions on actual return data.
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Portfolio Optimization

I Lower uncertainty in wealth for almost the same average
returns.

I More difficult to solve.
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Portfolio Optimization

DRO-1: µ2 = µ1,
DRO-2: µ2 = µ0 +Aµ1 +Bµ1
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Robust Knapsack

I Two period knapsack problem with uncertain weight
coefficients.

min
x1,x2

c>1 x1 + c>2 x2

s.t. d>1 x1 + d>2 x2 ≤ B ∀d2 ∈ U2(d1) ∀d1 ∈ U1
x1,x2 ∈ X

I Ellipsoidal uncertainty sets. Parameters from samples.

I Solution quality evaluated on new uncertainty samples.

I Performance evaluated with Normal and Lognormal
distributions.
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Robust Knapsack
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I Better constraint satisfaction at the price of lower objective
value.
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Conclusions

I In many problems, uncertainty depends on past realizations.

I Connected uncertainty sets incorporate this behavior and lead
to less variable solutions.

I The reformulated problems are difficult → decision rules and
conservative approximations.

Connected Uncertainty Set

Ui = [µi(di−1)− δ, µi(di−1) + δ]

µi(di−1) = 0.7µi−1(di−2) + 0.3di−1

T
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3

Kartikey Sharma

kartikeysharma2014@u.northwestern.edu

Northwestern INFORMS 13/13



References I

[1] Bita Analui and Georg Ch Pflug. On distributionally robust
multiperiod stochastic optimization. Computational
Management Science, 11(3):197–220, 2014.

[2] Dimitris Bertsimas and Phebe Vayanos. Data-driven learning
in dynamic pricing using adaptive optimization. Preprint,
2015.

[3] Anderson Rodrigo De Queiroz and David P Morton. Sharing
cuts under aggregated forecasts when decomposing
multi-stage stochastic programs. Operations Research Letters,
41(3):311–316, 2013.

[4] Gerd Infanger and David P Morton. Cut sharing for multistage
stochastic linear programs with interstage dependency.
Mathematical Programming, 75(2):241–256, 1996.

Northwestern INFORMS 1/0



References II

[5] Ruiwei Jiang, Jianhui Wang, and Yongpei Guan. Robust unit
commitment with wind power and pumped storage hydro.
IEEE Transactions on Power Systems, 27(2):800–810, 2012.

[6] Alvaro Lorca and Xu Andy Sun. Adaptive robust optimization
with dynamic uncertainty sets for multi-period economic
dispatch under significant wind. IEEE Transactions on Power
Systems, 30(4):1702–1713, 2015.

[7] Alvaro Lorca and Xu Andy Sun. Multistage robust unit
commitment with dynamic uncertainty sets and energy
storage. IEEE Transactions on Power Systems, 32(3):
1678–1688, 2017.

[8] Omid Nohadani and Arkajyoti Roy. Robust optimization with
time-dependent uncertainty in radiation therapy. IISE
Transactions on Healthcare Systems Engineering, 7(2):81–92,
2017.

Northwestern INFORMS 2/0



References III

[9] Linwei Xin and David A Goldberg. Distributionally robust
inventory control when demand is a martingale. arXiv preprint
arXiv:1511.09437, 2015.

[10] Long Zhao and Bo Zeng. Robust unit commitment problem
with demand response and wind energy. In 2012 IEEE power
and energy society general meeting, pages 1–8. IEEE, 2012.

Northwestern INFORMS 3/0



0 1 2
Time Period

80

100

120

W
ea

lth

CU

0 1 2
Time Periods

80

100

120

W
ea

lth

DRO-1

Northwestern INFORMS 4/0



Proposition

Given the sets Ũ1, . . . , ŨT (dT−1), the robust counterpart of constraint

E

[
T∑

t=1
ht(xt, ξt)

]
≤ B is

sup
P1∈Ũ1

EP1

[
h1(x1,d1) + sup

P2|1∈Ũ2(d1)

{
EP2|1

[
h2(x2,d2) + · · ·+

sup
PT |T−1∈ŨT (dT−1)

{
EPT |T−1

[
hT (xT ,dT )

]}]}]
≤ B.
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