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Connected Uncertainty Sets

» Current uncertainty realization & — future realizations &;.

» Implicitly present in uncertainty sets spanning multiple
periods.

Example : Ellipsoid Uncertainty set can be expressed as
combination of two uncertainty sets.

U=1{=(,%) | 1€l < p}
={£=(&,&) | & €Uy, & €Uz (1)}

where

U = {51 RISTS P} Us(&1) = {52 | 1&2] <4/ p? —f%}
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Connected Uncertainty Sets

» Current uncertainty realization & — future realizations &;.

» Implicitly present in uncertainty sets spanning multiple
periods.

» This project focuses on explicit dependence.

The parameters of the uncertainty set at each period are a
function of past realizations.
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Past Work

» Scenario Tress:Infanger and Morton [1996], De Queiroz and
Morton [2013]

» RO: Zhao and Zeng [2012], Jiang et al. [2012], Bertsimas and
Vayanos [2015], Lorca and Sun [2015,2017], and Nohadani
and Roy [2017].

» DRO: Analui and Pflug [2014], Xin and Goldberg [2015]
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RO Example

Consider
max c]—xl + C;—XQ
X1,X2

st.d]x; +dJxy < B Vdy € Us(dy) Vdy €Uy

X1,X9 € X

Uncertainty for ds explicitly depends on dj.
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RO Example

Consider
max c]—xl + C;XQ
X1,X2

st.d]x; +dJxy < B Vdy € Us(dy) Vdy €Uy

X1,X9 € X

Uncertainty for ds explicitly depends on dj.

» Ellipsoid

Uy(dy) = {dy | d2 = p2(d1) + Lougy : [Juzll2 < r2}, (E)
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RO Example

Consider
max c]—xl + C;XQ
X1,X2

st.d]x; +dJxy < B Vdy € Us(dy) Vdy €Uy

X1,X9 € X

Uncertainty for ds explicitly depends on dj.

» Ellipsoid
Us(dy) = {d2 | d2 = p2(d1) + Loug : [Jugllz < ra2}, (E)
» Center

po(dy) = Aoy (do) + Fady + c2,
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sup E, [lexl] < B. (DRO)
Prel
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DRO Example

sup E, [lexl] < B. (DRO)
Prel

gl = {Pl € M|P1(d1 € El) =1, I3 < EP1[d1] <y,

Enl(di — pr)(di — 1) 7] < zl},
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DRO Example

sup By _p, [dl xl} < B. (DRO)
Prely

Zjl = {Pl S M‘Pl(dl €E) =1, ®y < Ep,[di] < Iy,

Ep[(di — p)(dy — pa) '] =2 21},

Up(dy) = {P2|1 € M‘qu d; € Z5) =1, p,(d1) < Ep,, [do] < Hrp(dy),

Epy,[(ds — pa(d1))(d2 — pia(d1)) 7] 2 22<d1)}
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DRO Example

sup E, . [dfxﬁ sup E, o [d;xQ” < B. (DRO)
Pielty Pyeldz(dy)

Zjl = {Pl S M‘Pl(dl €E) =1, ®y < Ep,[di] < Iy,

Ep[(di — p)(dy — pa) '] =2 21},

() = { oy € M[Pas( € 22) = 1, 1, (@1) < En, 4] < ol

Epy,[(ds — pa(d1))(d2 — pia(d1)) 7] 2 zz(dl)}
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Why do this?

Connected Uncertainty Set

Fixed Uncertainty Set
U; = [pi(diz1) — 0, pi(di—1) + 0]

Uy = Uy = Uz = |1 — 6, 1 + 3]

d
1T T pi(di—1) = 0.7p-1(di—2) + 0.3d;—1
dy ] T
di 1
p3(d2)
th
128 Us(dy) Us(dy)
: : 7 : : 7
1 2 3 1 2 3
INFORMS 6/13
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Why do this?

Fixed Uncertainty Set Connected Uncertainty Set
d Uy =Us =Us = [p1 — §, j11 + 0] d Ui = [pi(di-1) = 6, pi(di-1) + 9]
A A
pidi-1) = 0.7pi-1(di-2) + 0.3di—1
do T
dy
ps(dz)
o
128 Us(dy) Us(da)
t f —> T
1 2 3

» Provides better coverage of uncertainty realizations
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Why do this?

Fixed Uncertainty Set Connected Uncertainty Set
d Uy =Uy =Us = [p1g — b, 1y + 6] d Us = [pi(di—1) = 6, pi(di—1) + 6]
T T pidio) = 0.7u1(dimg) +0.3d;
dy ] T
di 1
pa(dz)
M1
U, Us(dy) Us(dz)
t f —> T
1 2 3

» Provides better coverage of uncertainty realizations

» Incorporates information about structure of uncertainty
realizations.
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Why do this?

Fixed Uncertainty Set Connected Uncertainty Set
d Uy =Uy =Us = [p1g — b, 1y + 6] d Us = [pi(di—1) = 6, pi(di—1) + 6]
pi(di—1) = 0.7pi-1(di—2) + 0.3d; 1

dy | T
di 1

» Provides better coverage of uncertainty realizations

» Incorporates information about structure of uncertainty
realizations.

» Provides framework for updating uncertainty sets if desired.
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RO: Insights

T
Zd;rxt S B
t=1
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RO: Insights

T
Zd;rxt S B
t=1

» Linear constraints with polyhedral or ellipsoidal uncertainty
sets are reformulated as LPs and SOCPs.

NORTHWESTERN INFORMS

7/13



NORTHWESTERN - INFORMS 8/13



T
E [Z hi(xt, &) | < B
=1
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DRO: Insights

<B

T
E [Z hae (%, &)
=1

» DRO problems with moment CU sets are reformulated as
infinite dimensional problems.
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DRO: Insights

<B

T
E [Z hae (%, &)
=1

» DRO problems with moment CU sets are reformulated as
infinite dimensional problems.

> Infinite dimensional problem are conservatively approximated
by limiting number of variables.
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Portfolio Optimization

» Two period portfolio optimization problem

inE T T
max min Elu(ry 21) + u(r; 22)]

n
s.t. lei =1
=1
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Portfolio Optimization

» Two period portfolio optimization problem

inE T T
max min Elu(ry 21) + u(r; 22)]

» Maximize u(z) = ming agz + by
» 5 Stocks from Yahoo Finance

» Moment based uncertainty set. po(di) = po + Apg + Bd;
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Portfolio Optimization

» Two period portfolio optimization problem

inE T T
max min Elu(ry 21) + u(r; 22)]

v

Maximize u(z) = ming agz + by,

5 Stocks from Yahoo Finance

v

v

Moment based uncertainty set. po(d;) = po + Apg + Bd;

v

Estimate performance of solutions on actual return data.
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Portfolio Optimization

5442*
DRO-1: ps = p1, §
DRO-2: ps = po + Aps + Bus 2 4r
s
Sagt
=
Bl
1 2

Time Periods
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Portfolio Optimization

=42+
g X DRo2
DRO-1: ps = p1, =
DRO-2: ps = po + Aps + Bus 2 4r
s
Sagt
=
Bl
I 2

Time Periods
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Portfolio Optimization

=42+
g X DRo2
DRO-1: ps = p1, =
DRO-2: po = o + Apy + B 84
CU: Mg(dl):M0+AM1+Bd1 §
Sagt
=
Bl
i 2

Time Periods
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Portfolio Optimization

hs
[S)
T

DRO-1: ps = p1,
DRO-2: po = o + Apy + B
CU: ,U/Z(dl) = o + A,Uq + Bdl

w
oo
T

Wealth Standard Deviation

w
=
T

Time Periods
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Portfolio Optimization

hs
[S)
T

DRO-].Z Mo = U1,
DRO-2: po = o + Apy + B
CU: ,U/2(d1) = o + A,LLl + Bd1

w
oo
T

Wealth Standard Deviation

w
=
T

Time Periods

» Lower uncertainty in wealth for almost the same average
returns.
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Portfolio Optimization

hs
[S)
T

DRO-].Z Mo = U1,
DRO-2: po = o + Apy + B
CU: ,U/2(d1) = o + A,LLl + Bd1

w
oo
T

Wealth Standard Deviation

w
=
T

Time Periods

» Lower uncertainty in wealth for almost the same average
returns.
» More difficult to solve.
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Robust Knapsack

» Two period knapsack problem with uncertain weight
coefficients.

min c]—xl + C;—XQ
X1,X2

st.d{ x; +dgxo < B Vdy € Up(dy) Vdy €Uy
X1,X2 € X
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Robust Knapsack

» Two period knapsack problem with uncertain weight
coefficients.

min c]—xl + C;—XQ
X1,X2

st.d{ x; +dgxo < B Vdy € Up(dy) Vdy €Uy
X1,X2 € X

» Ellipsoidal uncertainty sets. Parameters from samples.
» Solution quality evaluated on new uncertainty samples.

» Performance evaluated with Normal and Lognormal
distributions.
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Robust Knapsack

160
i
= S 1401
= =
5 >
Sosf »
g 2
k| g 1op
z =
S0.6f o
1 &
] 21001
& z
04+
80+
| | | . | |

2 2
Size (r) Size (r)

» Better constraint satisfaction at the price of lower objective
value.

NORTHWESTERN INFORMS 12/13



Robust Knapsack

o
23
T

Constraint Satisfaction
S
>
T

S
=
T

o—oNA

160

=
S

Average Objective Value
S
3

=
3

» Better constraint satisfaction at the price of lower objective

value.
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Robust Knapsack

160

=
S

o

=4

Constraint Satisfaction
=)
8

Average Objective Value

=
3

2 2
Size (r) Size (r)

» Better constraint satisfaction at the price of lower objective
value.
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Conclusions

» In many problems, uncertainty depends on past realizations.

» Connected uncertainty sets incorporate this behavior and lead
to less variable solutions.

» The reformulated problems are difficult — decision rules and
conservative approximations.

Connected Uncertainty Set
d Ui = [pi(di—1) = 6, pi(di-1) + 9]
pi(di—1) = 0.7pi—-1(di—2) + 0.3d;i—1

i T Kartikey Sharma
d
alda) kartikeysharma2014@u.northwestern.edu
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Proposition

Given the sets L~{1, ...,Ur(dr—1), the robust counterpart of constraint

E Lé ht(xt,ﬁt)} <Bis

sup Epl[hl(xhdl)ﬂL sup {EP2|1[h2(X2,d2)+"'+
Prels Py €U2(d1)

o s (B fireran] J}] < 5
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