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enhance preparedness, responsiveness, and resilience of health systems against unexpected
events that jeopardize people’s health.”

e Existing efforts
* Focus on preparedness

* Emphasis on detection and spread prevention

e QOur Goal

e Address resilience

 Emphasis on responsiveness and adaptability of hospitals
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DR Deferred Elective Surgeries

- : : The,.
|2-week cancellation rates of surgery for benign disease Guardian

(March to May 2020) New Covid wave could worsen NHS
surgery backlog, experts warn

Relaxation of rules and sharp rise in B.1.617.2 variant cause
concern, as millions wait for hospital treatment

There has been a huge increase in the number of people waiting
more than a year for NHS care since the start of the Covid
pandemic

Number of people waiting over 52 weeks for NHS treatment

B 20-100%
. 80 i 89‘%) 185-fold increase ——p
. 70 790/ year on year
= o
. 60-69%
50 —59%
40 —49%
30 —39%
20 —29%
10—-19%
o 1,643
0-9%
Source: COVIDSurg Collaborative (2020) Elective surgery cancellations due to the COVID-19 pandemic: Source: D. Campbell. ‘A truly frightening backlog’: ex-NHS chief warns of delays in
global predictive modeling to inform surgical recovery plans. British Journal of Surgery, 107(11): 1440-1449. vital care. The Guardian, April 2, 2021 / N. Davis and D. Campbell. New Covid wave

could worsen NHS surgery backlog, experts warn. The Guardian, May 20, 2021.
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Cost of Deferred Elective Surgeries

* Increased (financial and social) costs, due to more costly treatment for more advanced
diseases.

e Significant financial loss for hospitals

* Average monthly loss of revenue of the U.S. hospitals is $50.7 billion for March-June 2020
(Meredith et al. 2020).

e Elective surgeries account for 43% of gross revenue of the U.S. hospitals (Tonna et al. 2020).

Source: Meredith, High, and Freischlag (2020) Preserving elective surgeries in the COVID-19 pandemic and the future. JAMA 324(17):1725-1726. Tonna, Hanson, Cohan, McCrum, Horns, Brooke, Das, Kelly,

Campbell, and Hotaling (2020) Balancing revenue generation with capacity generation: case distribution, financial impact and hospital capacity changes from cancelling or resuming elective surgeries in the US
during COVID-19. BMC Health Services Research 20(1):1-7.
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eyl Capacity Management for Deferred Surgeries

 Expanding surgical capacity of hospitals is necessary.

- Quote from Jain et al. (2020) on elective orthopedic surgery in the U.S.:

<.a

“When the healthcare system recovers to the pre-pandemic forecasted full capacity, there
will be a cumulative backlog of >1 million surgical cases at 2 years after the end of
deferment. ... it appears to be impossible to close the gap on the accumulative backlog.”

Source: Jain, Jain, and Aggarwal (2020) SARS-Cov-2 impact on elective orthopedic surgery: implications for post-pandemic recovery. The Journal of Bone and Joint Surgery. Ljungqvist, Nelson, and Demartines
(2020) The post COVID-19 surgical backlog: Now is the time to implement enhanced recovery after surgery. World Journal of Surgery 44(10):3197-3198. Salenger et al. (2020) The surge after the surge: cardiac
surgery post-COVID-19. The Annals of the Thoracic Surgery.
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 Expanding surgical capacity of hospitals is necessary.

- Quote from Jain et al. (2020) on elective orthopedic surgery in the U.S.:

“When the healthcare system recovers to the pre-pandemic forecasted full capacity, there
will be a cumulative backlog of >1 million surgical cases at 2 years after the end of
deferment. ... it appears to be impossible to close the gap on the accumulative backlog.”

 Current policies in the medical literature (Ljungqvist et al. 2020, Salenger et al. 2020) are rather ad-hoc.

- No expansion, or expanding capacities by pre-determined amounts.

* Due to the presence of uncertainty over time, surgical capacities should be adjusted dynamically.

= Goal: Develop an optimization-based methodology to dynamically manage surgical
capacity for deferred surgeries, while maximizing the profit with service requirements.
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GERLIN " Problem Set-up

o Cp=(Cgy, -+, Cp,) :base expansion decision.

e C=(Cy,-,C) :expedite expansion decision.

e U, = (ut(_L), TN ut(t)) : number of deferred surgeries.
o 17 is the number of deferred surgeries initially scheduled at 7 but not performed until 7.

[

. ut(t) = d, is the uncertain demand at .
¢ X = (xt(_L), ---,xt(t)) : surgery decision.
° W, = (wt(_L), oo, Wt(t)) : uncertain number of departing patients.

e State dynamics and constraints:

Ufg_uzgf) (T)_W(T) Vr=—L -t Vt=1,.-- T

T) < U(T) Z Xt(T) < Ct CBt Ct, (CB,C) cC
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o Cp=(Cgy, -+, Cp,) :base expansion decision.
e C=(Cy,-,C) :expedite expansion decision.
e U, = (ut(_L), TN ut(t)) : number of deferred surgeries.

. ut(f) is the number of deferred surgeries initially scheduled at 7 but not performed until .

. ut(t) = d, is the uncertain demand at .
¢ X = (xt(_L), ---,xt(t)) : surgery decision.
° W, = (wt(_L), oo, Wt(t)) : uncertain number of departing patients.

e State dynamics and constraints:

State dynamics (7) (1) _ (T) _ W(T) Vr=—L,---t, Vt=1,--- T

- | U1 = U

. 7' T T
Demand & capacity ) < U( ) Z Xt( ) < Ct Cg:+ Ct, (Cg,C)eC Expansion constraints

constraints
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C, : Surgery cost p,_. - Defer cost f,_. : Departure cost

* Dynamic programming (DP) problem:

min Eg, | minEy. | H1(:-) + min Eg | minEy, | Ho(:) +---+minEg. | minEy. | H (-
Cs.C. 1 X W ( ) C 2 Xo Wo ( ) Cr T X7 Wr i ( )_
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Sl Dynamic Programming Formulation

* Dynamic programming (DP) problem:

min Eq | minEy., |H1(-) +min Eg | minEw, |Ho(-) + -+ minEg. | minEy,. | HT (-
emin By | min Ew, | (- + min Eos | min B, | Fe() in By | min B, [Hr()

* Solving this problem as a stochastic DP may not be appropriate.
* Uncertain departure w, should be described endogenously; it should depend on u, and X..

> This causes multilinear uncertainty, which makes the problem very challenging to solve.

e [imited distributional information for uncertain parameters: Only a few data points are
available with large variability; poor approximation can significantly undermine the

performance.

7132



ZUSE

GER Demand and Departure Uncertainty

 Departing patients w, depends on u, and X,

w, < u, — X, almost surely.

8/32



ZUSE

GER Demand and Departure Uncertainty

 Departing patients w, depends on u, and X,

w, < u, — X, almost surely.

* Introduce departure uncertainty 0, € [0,1] such that w, = (1 — 6)(u, — x,).

= () is an uncertain proportion of non-departing patients at time .

8/32



ZUSE

GERLIN Demand and Departure Uncertainty

 Departing patients w, depends on u, and X,

w, < u, — X, almost surely.

* Introduce departure uncertainty 0, € [0,1] such that w, = (1 — 6)(u, — x,).

= () is an uncertain proportion of non-departing patients at time .

 Now u, is described via multilinear functions of 0, ,d, ,and X, as

—1 —1 —1
=1 [l a]d- 2 ( 91«)’%@ Ve=—L -1Vt ET].
[

k=max(z,1) t'=max(z,1) \ k=t'

8/32



ZUSE

GERLIN Demand and Departure Uncertainty

 Departing patients w, depends on u, and X,

w, < u, — X, almost surely.

* Introduce departure uncertainty 0, € [0,1] such that w, = (1 — 6)(u, — x,).

= () is an uncertain proportion of non-departing patients at time .

 Now u, is described via multilinear functions of 0, ,d, ,and X, as

—1 —1 —1
=1 [l a]d- 2 ( 91«)’%@ Ve=—L -1Vt ET].
[

k=max(z,1) t'=max(z,1) \ k=t'

* We take a (distributionally) robust optimization approach to address this multilinearity.
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Overview

2. Robust Optimization (RO) Approach
* Tree of Uncertainty Products

 Decision Rule Approximations

3. Distributionally Robust Optimization (DRO) Approach
e Mean-Mean Absolute Deviation (MAD) Ambiguity Sets
e Sample Average Approximations

4. A Case Study for Hernia Surgeries
* Performance Improvement
e Structural Insights
e Sensitivity Analysis

5. Conclusions
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Yl Robust Optimization

e Methodology to tackle optimization problems under uncertainty
* Assumes that the uncertain parameter (denoted by &) lies inside a set (denoted by %)
e Objective: f(x, &) and Constraint: g(x,¢&) <0, then

min max f(x, &)
x EeU

s.t. 2(x,6) <0 VEe U

 Minimizes the worst case of the objective
e Constraints need to be satisfied for every realization

* We use a multistage variant

e Solution at stage f depends on uncertainty at stage ¢ — 1
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INSTITUTE Formulation

min max G (Ce(Orr—11, dii—11), Xin (01511, diny), O111, O
ct(-),xt(-)emee,dmeug[;] t (Ct(Bre—1), Ae—1): Xt (0111 din)). 01 Oy

[ t—1 t—1
S.1. Z (H (9/() X(/T)(H[t/_ﬂ, d[t’]) < H Ok | d- \V/H[T] € 0, d[T] cU, T € [—L ; t], [ € [T]

t’=max(7,1) \k=t’ k=max(7,1)

> X7 O-1), dy) < G+ Cot + CelOp—1) die—1y) VO € ©, 0y €U, t € [T]

T€[—L:t]
X¢(O_17, Q) € R Vo) € ©,dr €U, t € [T]
(Cs, C1,Co(01,01),--+,Cr(O7—11, A[7—17)) €C Vo € ©,dm €U,

Whel‘e Gt(Ct, X[t], 9[1‘]7 d[t]) =

t t I t—1 t t—1 ]
bB,t(ét + CB,t) + by Cy + Z CtXt(T) + Z fi ( H (9/() ad. — Z (H (9/() X(,T)

T=—L T=—L k=max(7,1) t’=max(7,1) \k=t'

T——L k:max(T,1) l":max(T,1) k=t

-+ Z (pt—7 — ) ( H t9k) d, —Z (H Qk) X(/T) :
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t’=max(7,1) \k=t’ K=max(T,1)

> X7 0ng dy) < Ci+ Coi+ G0\ di—1)) VO € ©,dry U, t € [T]
TE[—L:1]
xt(e[t—ﬂa d[t]) = RS:LL T €0,dn U, tc [ 7]
(CB, Cy, Co(01,d1), -+, Cr(O7—11, O7—1) amn e,

Vo

where Gi(Ci, xpy, 0, diy) = / > Multilinear uncertainty

t t I t—1 t t—1 ]
bB,t(Ct + CB,t) + b Cy + Z CtXt(T) + Z fi_ ( H 19/() ad. — Z (H 19/() Xt(/T)
T=—L T=—L k=max(7,1) t’=max(7,1)
_ /

+ 3 (s —fir) ( 11 ek) o~ (H9k>x}7)

T=—L k:max(T,1) t’:max(7,1) k=t'

s T
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Multilinear Uncertainty

e £:=(0,,:--,0,,d,, -+, d;) with the uncertainty set Z := O X %.

* Objective functions and constraints are given as multilinear robust constraints:

N
PE+ ) 4, 8,0 >q) VEEE, whereg,®:=|]¢&
n=1 sz,

i Example:

P'E+ 41818 + 2665 + q3616E5 > gy where
S, =112}, %, =12,3}, 7, =11,2,3}.

e “Typical” robust constraints are linear,i.e.,g, =0 Vn > 1.

 Multilinear robust constraints are generally not tractable.

12/32




ZUS

J Tree of Uncertainty Products: Example

z¥ = (0,0,0,0,0)
Root node (Node 0)

(Root >
& ® &y
G CGEDRGED GED
G- 66D G- 66> G

13/32



ZUS

J Tree of Uncertainty Products: Example

z¥ = (0,0,0,0,0)
Root node (Node 0)

OS2 Roob
& ® ®
G G G 0 Ge
G 6D & 66> G

13/32



ZUSE
INSTITUTE

Tree of Uncertainty Products: Example

z¥ = (0,0,0,0,0)
Root node (Node 0)

(1) — —
T e ool
& @ @
z~ = (1,1,0,0,0) ,_ _e
CRIDIGCT GRID
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Root node (Node 0)

D) = —

T e ool
& @ @
z~ = (1,1,0,0,0) ,_ _e

7z = (1,1,0,1,0) z% = (1,1,0,0,1)
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Lifting with Tree of Uncertainty Products

e £:=(0,,-,0.d,, -+, d;) with the uncertainty set Z := O X %.

e Lifted uncertainty set by using recursive binary McCormick relaxation between node i and
its parent node £(i)

§€E, ni=&: Vi:4(i) =0
Mi 2 m(i)gk;‘ +gk;“ Ne(i) — m(i)gk;‘ Vi ﬁ(z) ?é 0
=L (&n)eRN | ni > Qe(i)’s’“;" +§k;77£(z') — Qe(i)ﬁk: Vi:£(i) # 0
M < Mooy Skx + §,€; Mei) — ﬁE(i)gk: Vi: £(i) # 0
Mi Qe(i)fk;‘ T Ek;; Me(i) — Qg(i)gk;‘ Vi £(i) # 0
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T Zﬁé(i)gk;‘ T gk;“ MNe@i) — ﬁﬁ(i)gk;‘ '

[n)
|

M <Pleciyéry +&,a ey — e &, |

8k e ~ My St |
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e £:=(0,,-,0.d,, -+, d;) with the uncertainty set Z := O X %.

e Lifted uncertainty set by using recursive binary McCormick relaxation between node i and
its parent node £(i)

T Zﬁf(i)’gk;‘ T gk; Ne@) — ﬁﬁ(i)gk;‘ '

[n)
|

(&,m) € REHY | 7 Zﬂg(i)’skf T §k;" Tle@i) — Qg(i)gk;r

M <Pleciyéry +&,a ey — e &, |

McCormick relaxation between

e 7. is a lifted uncertain parameter for a node 1 of the tree of uncertainty products.
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Approximating Multilinear Constraints

N
() p'E+ ) q8EZ")>q, VEEE

n=1

=l

Multilinear in &

15/32

N
(2 P'E+ D am =gy VENMNEE

n=1

\:

Linear in (€, 1)
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Syl Approximating Multilinear Constraints
N N _
() pTE+ ) qe&EZ™)>q, VEEE (2 p'E+ ) an=q VEmMEE
n=1 n=1
: / \1
Multilinear in & Linear in (€, 1)
Theorem |Each lifted variable 17, is an approximation |

(2) is a conservative approximation of (). of multilinear function g(&;z"™).

15/32



ZUSE

eyl Approximating Multilinear Constraints

N N
() pTE+ ) q8EZ™) >q, VEEE (2 P'E+ D am =gy VENMNEE
n=1 n=1
i / \1
Multilinear in & Linear in (€,7)
Theorem |Each lifted variable 17, is an approximation |
(2) is a conservative approximation of (). of multilinear function g(&; ).

Theorem
If 2= = 2’:1 [0, £ ] and the tree of uncertainty product

satisfies that £ # k]>X< foranyi #j,i, j € /N, then (1) is

Each lifted variable 77, becomes a
tight approximate of g(&; ™).

Extends current literature on convex relaxation
of sum of multilinear functions (Ryoo and

equivalent to (2).

Sahinidis 2001, Luedtke et al. 2012)
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Decision Rule Approximations

e Approximate decision functions by parametric functions
x(6) L0 VéEeUbyxy+XELSOVEE U

* Employ decision rules, e.g, Linear decision rules

—1 t —1 t—1
x@=w®+ Y W, + Y WO, ,C,=v,+ )V, 0+ )V,
t'=1 t'=1 t'=1 t'=1

* Form a tree of uncertainty products and approximate with lifted uncertainty sets.
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* Employ decision rules, e.g, Linear decision rules

—1 t —1 t—1
x@=w®+ Y W, + Y WO, ,C,=v,+ )V, 0+ )V,
t'=1 t'=1 t'=1 t'=1

* Form a tree of uncertainty products and approximate with lifted uncertainty sets.

Proposition
Under linear decision rules, the multistage problem is approximated as a static robust

optimization problem with O(T?) uncertain parameters and decision variables.

Generalizable to multilinear decision rules!
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e Methodology to tackle optimization problems under uncertainty

* Assumes that the uncertain parameter (denoted by ¢&) lies has a distribution [P that lies
inside an ambiguity set (denoted by &)

e Objective: f(x, ) and Constraint: g(x, &) < 0, then

min max k. p[f(x, )]
x Ped

st o(, &) <0 VEEU

 Minimizes the worst-case expected value of the objective

 Constraints need to be satisfied for every realization
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* We use a multistage variant

e Solution at stage f depends on uncertainty at stage f — 1

min sup Ey |min sup Ew, [Hi(-) + min sup Eg, [min supEw, | H2(:) + - - + min sup Eq, [ min sup [
Ce:C1 Fy. X1 Fw, C2 Fy, X2 Fu, CT Fy, | XT Fug
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Definition

For the set of non-negative Borel measurable functions .Z , (R*1), 49> Aq = 0,
0<0 < ét <60 <1l,and 0 <d < c?t < d, ,mean-MAD ambiguity set F is defined as

F: F€M+(R2T)

Pr (et = [Qtagt]) = 1
Pr (dt = [dtyat]) =1,

4:"F [Ht] e é\ta

4:F [dt] = C/Z\t)

{0/, dir } are mutually independent

e 0,0,d,d, :lower and upper support of 6, and d..

—1 — 7

A\ A\

e 0., d, :expectation of 0, and d..

16, —8,|| <X, Vte[T

\d,—dy|| <Ay, Vte[T)

o Ay, 44 : mean-absolute deviation bound of 6, and d..

19/32

All of them can be easily
estimated from (small) data!
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Theorem

With the mean-MAD ambiguity set &, the multistage DRO problem is reformulated as a
stochastic optimization problem with three-points discrete distributions for each uncertain parameter.
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Theorem

With the mean-MAD ambiguity set &, the multistage DRO problem is reformulated as a
stochastic optimization problem with three-points discrete distributions for each uncertain parameter.

min Ky g+ |min Ey, g+ |Hi(:) +min Eg g+ [min Eyw,wgx |Ho(-)+---+minEqg g+ [min Ey. g [HT : }
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Theorem

With the mean-MAD ambiguity set &, the multistage DRO problem is reformulated as a
stochastic optimization problem with three-points discrete distributions for each uncertain parameter.

min Ky g+ |min Ey, g+ |Hi(:) +min Eg g+ [min Eyw,wgx |Ho(-)+---+minEqg g+ [min Ey. g [HT : }
CB,C-I 1 dy X1 1 W+ ( ) CZ 2 do X5 2 Wo ( ) CT T dT XT T W ( )

* Under mean and MAD constraints, the worst-case probability distribution is always fixed,
supported over lower and upper bounds, and their means.

* Insight: There exists a class of stochastic optimization problems whose solutions are
distributionally robust!
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Sample Average Approximation

* By using scenario trees, we can handle multilinear uncertainty.

 The reformulated problem has finite (3°) scenarios.

* We use Sample Average Approximation to compute tractable approximate solutions.
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* Hernia dataset contains all claim records of patients in network from 2017 to 2020.
- Dates of office visit, surgery (if performed)

- All payment information with dates for all medical procedures and drug transaction history
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iyl Case Study of Hernia Surgery

* Hernia dataset contains all claim records of patients in network from 2017 to 2020.
- Dates of office visit, surgery (if performed)
- All payment information with dates for all medical procedures and drug transaction history

 Cost parameters and demand/departure uncertainty information is estimated from the hernia
dataset.

e Our analysis estimates current backlog as 4 months of average (pre-pandemic) monthly demand.
* Three methods are implemented and compared:

- RO: robust optimization-based method

- DRO: distributionally robust optimization-based method

- Detl00: temporally increase capacity by at most 100% (for ~5 months)
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Performance Improvement

D Det100 RO DRO
Mean CVaR75 CVaR90 Mean CVaR75 CVaR90 Mean CVaR’75 CVaR90
D—o -3631 -2803 -2531 -3648 -2947 2719 -3820 -2946 -2595
o (0.0) (0.0) (0.0) (0.49) (5.14) (7.42) (5.21) (5.09) (2.56)
D—4 4741 -4361 -4205 -4770 -4428 -4280 -4903 -4420 -4225
o (0.0) (0.0) (0.0) (0.61) (1.52) (1.77) (3.41) (1.34) (0.47)

e Both RO and DRO policies achieve better objective values (costs) than deterministic policies.

e DRO performs better in expectation (mean), but RO performs better at higher risk (CVaR90).
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Relative increase over initial capacity Relative increase over initial capacity
0:2vs4 0 : 2 vs 4 (90th percentile)
1 B RO’ 2 —8— 1 — 5 : > RO, 2 —8—
00 DRO, 2 — 00 | DRO, 2 —
det100, 2 —e— det100, 2 —e—
75 | RO, 4 --&-- 3 75 RO, 4 --&--
DRO, 4 - -%-- S DRO, 4 --%--
det100, 4 --©-- E’ det100, 4 --e-- £
50 . B 50 . ,,///
=
E \\ v ,/ 1|
25 CQEJ 25 : _,_’" - ’
0 : s 0 : e O
I I I I I I I I I I I I
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Time Period Time Period

e All methods keep maximum capacity for the first three months (surge period).
* The detl00 drops the most afterwards, whereas the other approaches maintain flexibility.

e The RO and DRO methods maintain more flexibility.
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 Key Ratios

base expansion cost

o =
surgery cost

expedited expansion cost

base expansion cost

 ( is the cost of base expansion as a fraction of the surgery cost

e [ is an estimate of how much more expensive it is to do an expedited expansion than base

expansion
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CoV of Expanded Capacity [%]

Proportion of Surge Expansion [%)]

--X- DRO, a=0.45
1.25 1.5 1.75 2 . .
B B

l

e Estimated from 100 scenarios

e RO is much less sensitive to a and decreases slightly with

e For DRO, (i) CoV increases with & and decreases with £, (ii) Proportion of Surge

Expansion decreases with & and 3
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Objective Improvement [%]
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e Objective improvement (in percentage) over deterministic policies for RO (left) and DRO (right)

* |f surge expansion is cheap or expensive then we get large objective improvements. For
“cheap” because of adaptivity and for “expensive” because of the use of base expansion
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Criteria DRO RO Det100
Average performance More effective Less effective benchmark
Performance under risky scenarios Less effective More effective benchmark
Expansion structure Slower cooldown; reserves  Faster cooldown; reserves No adantation
P higher capacity thereafter lower capacity thereafter P
e . Higher and sensitive Lower and less sensitive
Utilization of surge expansion . . Never used
to expansion costs to expansion costs
Impact of expansion costs .. . .
P P Sensitive Less sensitive No adaptation
on expansion structure
Impact of expansion costs . . .
P P Sensitive Less sensitive No adaptation

on objectives
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* Dynamic expansion of surgical capacity is necessary to clear a large number of deferred surgeries.
* Decision-making is challenging due to demand and departure uncertainty.

* Two optimization methods, based on RO and DRO, are developed.

* Proposed methods significantly improve objectives (5~10%) over deterministic policies on the
hernia case study.

 Expansion structure and objective performance are analyzed and sensitivity analysis is performed.

Han E, Sharma K, Singh K, and Nohadani O. Dynamic Capacity Management for
Deferred Surgeries. Under Review.
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Appendix: Example of Tree of Uncertainty Products

Theorem
If = = ngl [0, £ ] and the tree of uncertainty product satisfies

that k* # k]* forany i # j,i, j € /V/,then (1) is equivalent to (2).

Example

The lifted set = characterizes tight convex and concave
envelopes of a function @32

1&%
7 C&16284&5 1626486 D
Z a;s; + 016160 + 0,616,863 + 03616764 + 481626465 + Ds61626466 + D6S162645567 <G «52;:1 T

=1




