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“The World Health Organization considers health security as a comprehensive effort to 
enhance preparedness, responsiveness, and resilience of health systems against unexpected 
events that jeopardize people’s health.”

• What is health security?

• Existing efforts

• Focus on preparedness

• Emphasis on detection and spread prevention

• Our Goal

• Address resilience 

• Emphasis on responsiveness and adaptability of hospitals
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Deferred Elective Surgeries
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Source: D. Campbell. ‘A truly frightening backlog’: ex-NHS chief warns of delays in 
vital care. The Guardian, April 2, 2021 / N. Davis and D. Campbell. New Covid wave 
could worsen NHS surgery backlog, experts warn. The Guardian, May 20, 2021.

Source: COVIDSurg Collaborative (2020) Elective surgery cancellations due to the COVID-19 pandemic: 
global predictive modeling to inform surgical recovery plans. British Journal of Surgery, 107(11): 1440-1449.

12-week cancellation rates of surgery for benign disease 
(March to May 2020)
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Cost of Deferred Elective Surgeries
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• Increased (financial and social) costs, due to more costly treatment for more advanced 
diseases.

• Significant financial loss for hospitals

• Average monthly loss of revenue of the U.S. hospitals is $50.7 billion for March-June 2020 
(Meredith et al. 2020).

• Elective surgeries account for 43% of gross revenue of the U.S. hospitals (Tonna et al. 2020).

Source: Meredith, High, and Freischlag (2020) Preserving elective surgeries in the COVID-19 pandemic and the future. JAMA 324(17):1725-1726. Tonna, Hanson, Cohan, McCrum, Horns, Brooke, Das, Kelly, 
Campbell, and Hotaling (2020) Balancing revenue generation with capacity generation: case distribution, financial impact and hospital capacity changes from cancelling or resuming elective surgeries in the US 
during COVID-19. BMC Health Services Research 20(1):1-7.
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• Expanding surgical capacity of hospitals is necessary.

- Quote from Jain et al. (2020) on elective orthopedic surgery in the U.S.: 

“When the healthcare system recovers to the pre-pandemic forecasted full capacity, there 
will be a cumulative backlog of >1 million surgical cases at 2 years after the end of 
deferment. … it appears to be impossible to close the gap on the accumulative backlog.”

Source: Jain, Jain, and Aggarwal (2020) SARS-Cov-2 impact on elective orthopedic surgery: implications for post-pandemic recovery. The Journal of Bone and Joint Surgery. Ljungqvist, Nelson, and Demartines 
(2020) The post COVID-19 surgical backlog: Now is the time to implement enhanced recovery after surgery. World Journal of Surgery 44(10):3197-3198. Salenger et al. (2020) The surge after the surge: cardiac 
surgery post-COVID-19. The Annals of the Thoracic Surgery.
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- Quote from Jain et al. (2020) on elective orthopedic surgery in the U.S.: 

“When the healthcare system recovers to the pre-pandemic forecasted full capacity, there 
will be a cumulative backlog of >1 million surgical cases at 2 years after the end of 
deferment. … it appears to be impossible to close the gap on the accumulative backlog.”

• Current policies in the medical literature (Ljungqvist et al. 2020, Salenger et al. 2020) are rather ad-hoc.

- No expansion, or expanding capacities by pre-determined amounts.

➡ Goal: Develop an optimization-based methodology to dynamically manage surgical 
capacity for deferred surgeries, while maximizing the profit with service requirements.

Source: Jain, Jain, and Aggarwal (2020) SARS-Cov-2 impact on elective orthopedic surgery: implications for post-pandemic recovery. The Journal of Bone and Joint Surgery. Ljungqvist, Nelson, and Demartines 
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Problem Set-up
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•  : base expansion decision.

•  : expedite expansion decision.

•  : number of deferred surgeries.

•  is the number of deferred surgeries initially scheduled at  but not performed until .

•  is the uncertain demand at .

•  : surgery decision.

•  : uncertain number of departing patients.

• State dynamics and constraints:
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Expansion constraintsDemand & capacity 
constraints

State dynamics
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Dynamic Programming Formulation
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+ ct

tX

⌧=�L

x
(⌧)
t

+
tX

⌧=�L

pt�⌧ (u
(⌧)
t

� x
(⌧)
t

� w
(⌧)
t

) +
tX

⌧=�L

ft�⌧w
(⌧)
t

Eojin Han (SMU) Capacity Management for Deferred Surgeries 5/10

Dynamic Programming Formulation

7

 : Base expansion costbB,t  : Expedite expansion costbt

 : Surgery costct  : Defer costpt−τ  : Departure costft−τ

• Cost at time  :t



/32

Dynamic Programming Formulation

Ht (CB,t ,Ct ,ut , xt ,wt ) := bB,t (Ĉt + CB,t ) + bt Ct
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• Dynamic programming (DP) problem:
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• Solving this problem as a stochastic DP may not be appropriate.

• Uncertain departure  should be described endogenously; it should depend on  and .

‣ This causes multilinear uncertainty, which makes the problem very challenging to solve.

• Limited distributional information for uncertain parameters: Only a few data points are 
available with large variability; poor approximation can significantly undermine the 
performance.

wt ut xt

Dynamic Programming Formulation

7
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• Dynamic programming (DP) problem:
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• Departing patients  depends on  and :wt ut xt

 almost surely.wt ≤ ut − xt

• Introduce departure uncertainty  such that  .

➡   is an uncertain proportion of non-departing patients at time .

θt ∈ [0,1] wt = (1 − θt)(ut − xt)

θt t

u(τ)
t =

t−1

∏
k=max(τ,1)

θk dτ −
t−1

∑
t′ =max(τ,1) (

t−1

∏
k=t′ 

θk) x(τ)
t′ 

∀τ = − L, ⋯, t ∀t ∈ [T] .

• Now  is described via multilinear functions of  ,  , and  asut θt dt xt

• We take a (distributionally) robust optimization approach to address this multilinearity.



Overview

1. Introduction

2. Robust Optimization (RO) Approach

• Tree of Uncertainty Products

• Decision Rule Approximations

3. Distributionally Robust Optimization (DRO) Approach

• Mean-Mean Absolute Deviation (MAD) Ambiguity Sets

• Sample Average Approximations

4. A Case Study for Hernia Surgeries

• Performance Improvement

• Structural Insights

• Sensitivity Analysis

5. Conclusions
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Robust Optimization

10

• Methodology to tackle optimization problems under uncertainty

• Assumes that the uncertain parameter (denoted by ) lies inside a set (denoted by )

• Objective:   and Constraint:  , then

                                                   

• Minimizes the worst case of the objective

• Constraints need to be satisfied for every realization

• We use a multistage variant

• Solution at stage  depends on uncertainty at stage 

ξ 𝒰
f(x, ξ) g(x, ξ) ≤ 0

min
x

max
ξ∈𝒰

f(x, ξ)

s.t. g(x, ξ) ≤ 0 ∀ξ ∈ 𝒰

t t − 1
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Formulation

11
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Can be  (stochastic), or  (distributionally robust)𝔼 sup 𝔼
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Multilinear uncertainty
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Multilinear Uncertainty

12

•  with the uncertainty set .

• Objective functions and constraints are given as multilinear robust constraints:

,  where .

• “Typical” robust constraints are linear, i.e.,  .

• Multilinear robust constraints are generally not tractable.

ξ := (θ1, ⋯, θT, d1, ⋯, dT) Ξ := Θ × 𝒰

p⊤ξ +
N

∑
n=1

qn ⋅ gn(ξ) ≥ q0 ∀ξ ∈ Ξ gn(ξ) := ∏
i∈ℐn

ξi

qn = 0 ∀n ≥ 1

Example:

, where
, , .

p⊤ξ + q1ξ1ξ2 + q2ξ2ξ3 + q3ξ1ξ2ξ3 ≥ q0
ℐ1 = {1,2} ℐ2 = {2,3} ℐ3 = {1,2,3}
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Root node (Node 0)
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Tree of Uncertainty Products: Example

13

,  z(1) = (0,1,0,0,0) k*1 = 2
Node 1

z(2) = (1,1,0,0,0)
k*2 = 1 Node 2

z(3) = (1,1,0,1,0)
k*3 = 4

Node 3

z(4) = (1,1,0,0,1)
k*4 = 5

Node 4

z(0) = (0,0,0,0,0)
Root node (Node 0)
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Lifting with Tree of Uncertainty Products

14

•  with the uncertainty set .

• Lifted uncertainty set by using recursive binary McCormick relaxation between node  and 
its parent node 

ξ := (θ1, ⋯, θT, d1, ⋯, dT) Ξ := Θ × 𝒰
i

ℓ(i)
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Lifting with Tree of Uncertainty Products

14

McCormick relaxation between 

•  is a lifted uncertain parameter for a node  of the tree of uncertainty products.ηi i

•  with the uncertainty set .

• Lifted uncertainty set by using recursive binary McCormick relaxation between node  and 
its parent node 

ξ := (θ1, ⋯, θT, d1, ⋯, dT) Ξ := Θ × 𝒰
i

ℓ(i)
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Approximating Multilinear Constraints

15

(1) p⊤ξ +
N

∑
n=1

qng(ξ; z(n)) ≥ q0 ∀ξ ∈ Ξ (2) p⊤ξ +
N

∑
n=1

qnηn ≥ q0 ∀(ξ, η) ∈ Ξ

Linear in (ξ, η)Multilinear in ξ
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N

∑
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qng(ξ; z(n)) ≥ q0 ∀ξ ∈ Ξ (2) p⊤ξ +
N

∑
n=1

qnηn ≥ q0 ∀(ξ, η) ∈ Ξ

Theorem
(2) is a conservative approximation of (1).

Each lifted variable  is an approximation 
of multilinear function .

ηn
g(ξ; z(n))

Linear in (ξ, η)Multilinear in ξ
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Approximating Multilinear Constraints

15

(1) p⊤ξ +
N

∑
n=1

qng(ξ; z(n)) ≥ q0 ∀ξ ∈ Ξ (2) p⊤ξ +
N

∑
n=1

qnηn ≥ q0 ∀(ξ, η) ∈ Ξ

Theorem
(2) is a conservative approximation of (1).

Each lifted variable  is an approximation 
of multilinear function .

ηn
g(ξ; z(n))

Theorem
If  and the tree of uncertainty product 
satisfies that  for any , , then (1) is 

equivalent to (2).

Ξ = ×N
n=1 [0, ξn]

k*i ≠ k*j i ≠ j i, j ∈ 𝒩

Each lifted variable  becomes a 
tight approximate of .

ηn
g(ξ; z(n))

Extends current literature on convex relaxation 
of sum of multilinear functions (Ryoo and 
Sahinidis 2001, Luedtke et al. 2012)

Linear in (ξ, η)Multilinear in ξ
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Decision Rule Approximations

16

•   Approximate decision functions by parametric functions

                                                  

•   Employ decision rules, e.g., Linear decision rules

 , .

•   Form a tree of uncertainty products and approximate with lifted uncertainty sets.

x(ξ) ≤ 0 ∀ξ ∈ 𝒰 by x0 + Xξ ≤ 0∀ξ ∈ 𝒰

x(τ)
t = w(τ)

t +
t−1

∑
t′ =1

W(τ)
t,t′ 

θt′ 
+

t

∑
t′ =1

Ŵ(τ)
t,t′ 

dt′ 
Ct = vt +

t−1

∑
t′ =1

Vt,t′ 
θt′ 

+
t−1

∑
t′ =1

̂Vt,t′ 
dt′ 
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x(ξ) ≤ 0 ∀ξ ∈ 𝒰 by x0 + Xξ ≤ 0∀ξ ∈ 𝒰

x(τ)
t = w(τ)

t +
t−1

∑
t′ =1

W(τ)
t,t′ 

θt′ 
+

t

∑
t′ =1

Ŵ(τ)
t,t′ 

dt′ 
Ct = vt +

t−1

∑
t′ =1

Vt,t′ 
θt′ 

+
t−1
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̂Vt,t′ 
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Proposition
Under linear decision rules, the multistage problem is approximated as a static robust 
optimization problem with  uncertain parameters and decision variables.𝒪(T3)
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•   Approximate decision functions by parametric functions

                                                  

•   Employ decision rules, e.g., Linear decision rules

 , .

•   Form a tree of uncertainty products and approximate with lifted uncertainty sets.

x(ξ) ≤ 0 ∀ξ ∈ 𝒰 by x0 + Xξ ≤ 0∀ξ ∈ 𝒰

x(τ)
t = w(τ)

t +
t−1

∑
t′ =1

W(τ)
t,t′ 

θt′ 
+

t

∑
t′ =1

Ŵ(τ)
t,t′ 

dt′ 
Ct = vt +

t−1

∑
t′ =1

Vt,t′ 
θt′ 

+
t−1

∑
t′ =1

̂Vt,t′ 
dt′ 

Proposition
Under linear decision rules, the multistage problem is approximated as a static robust 
optimization problem with  uncertain parameters and decision variables.𝒪(T3)

Generalizable to multilinear decision rules!
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Distributionally Robust Optimization

18

• Methodology to tackle optimization problems under uncertainty

• Assumes that the uncertain parameter (denoted by ) lies has a distribution  that lies 
inside an ambiguity set (denoted by )

• Objective:   and Constraint:  , then

                                                   

• Minimizes the worst-case expected value of the objective

• Constraints need to be satisfied for every realization

ξ ℙ
𝒜

f(x, ξ) g(x, ξ) ≤ 0

min
x

max
ℙ∈𝒜

𝔼ξ∼ℙ[ f(x, ξ)]

s.t. g(x, ξ) ≤ 0 ∀ξ ∈ 𝒰
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Distributionally Robust Optimization

18

any

min
CB ,C1

sup
Fd1

Ed1


min

x1
sup
Fw1

Ew1


H1(·) + min

C2
sup
Fd2

Ed2


min

x2
sup
Fw2

Ew2


H2(·) + · · ·+min

CT

sup
Fd

T

EdT


min
xT

sup
Fw

T

EwT

h
HT (·)

i�
· · ·

#
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• We use a multistage variant

• Solution at stage  depends on uncertainty at stage t t − 1
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Mean-MAD Ambiguity Sets

19

For the set of non-negative Borel measurable functions , , 

, and  , mean-MAD ambiguity set  is defined as

ℳ+(ℝ2T) λθt
, λdt

≥ 0
0 ≤ θt < ̂θt < θt ≤ 1 0 ≤ dt < ̂dt < dt ℱ

Definition

•  : lower and upper support of  and .

•  : expectation of  and .

•  : mean-absolute deviation bound of  and .

θt, θt, dt, dt θt dt
̂θt, ̂dt θt dt

λθt
, λdt

θt dt

All of them can be easily 
estimated from (small) data!
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Reformulation
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Theorem
With the mean-MAD ambiguity set , the multistage DRO problem is reformulated as a 
stochastic optimization problem with three-points discrete distributions for each uncertain parameter.

ℱ

• Under mean and MAD constraints, the worst-case probability distribution is always fixed, 
supported over lower and upper bounds, and their means.

• Insight:  There exists a class of stochastic optimization problems whose solutions are 
distributionally robust!
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Sample Average Approximation

21

• By using scenario trees, we can handle multilinear uncertainty.

• The reformulated problem has finite ( ) scenarios.

• We use Sample Average Approximation to compute tractable approximate solutions. 

32T
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Case Study of Hernia Surgery

23

• Hernia dataset contains all claim records of patients in network from 2017 to 2020.

- Dates of office visit, surgery (if performed)

- All payment information with dates for all medical procedures and drug transaction history

• Cost parameters and demand/departure uncertainty information is estimated from the hernia 
dataset.

• Our analysis estimates current backlog as 4 months of average (pre-pandemic) monthly demand.

• Three methods are implemented and compared:

- RO: robust optimization-based method

- DRO: distributionally robust optimization-based method

- Det100: temporally increase capacity by at most 100% (for ~5 months)
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Performance Improvement
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• Both RO and DRO policies achieve better objective values (costs) than deterministic policies.

• DRO performs better in expectation (mean), but RO performs better at higher risk (CVaR90).
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• Both RO and DRO policies achieve better objective values (costs) than deterministic policies.

• DRO performs better in expectation (mean), but RO performs better at higher risk (CVaR90).
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Structure of Expansion Policies

25

• All methods keep maximum capacity for the first three months (surge period).

• The det100 drops the most afterwards, whereas the other approaches maintain flexibility. 

• The RO and DRO methods maintain more flexibility. 
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Sensitivity Analysis

26

• Key Ratios

           

           

•  is the cost of base expansion as a fraction of the surgery cost

•  is an estimate of how much more expensive it is to do an expedited expansion than base 
expansion

α =
base expansion cost

surgery cost

β =
expedited expansion cost

base expansion cost

α
β
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Variation in Expanded Capacity

27

• Estimated from 100 scenarios

• RO is much less sensitive to  and decreases slightly with 

• For DRO, (i) CoV increases with  and decreases with , (ii) Proportion of Surge 
Expansion decreases with  and 

α β
α β

α β
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Sensitivity of Objective

28

• Objective improvement (in percentage) over deterministic policies for RO (left) and DRO (right)

• If surge expansion is cheap or expensive then we get large objective improvements. For 
“cheap” because of adaptivity and for “expensive” because of the use of base expansion
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Policy Comparison

29
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Conclusions

30

• Dynamic expansion of surgical capacity is necessary to clear a large number of deferred surgeries.

• Decision-making is challenging due to demand and departure uncertainty.

• Two optimization methods, based on RO and DRO, are developed.

• Proposed methods significantly improve objectives (5~10%) over deterministic policies on the 
hernia case study.

• Expansion structure and objective performance are analyzed and sensitivity analysis is performed.

Han E, Sharma K, Singh K, and Nohadani O. Dynamic Capacity Management for 
Deferred Surgeries. Under Review.





Appendix: Example of Tree of Uncertainty Products

Theorem
If  and the tree of uncertainty product satisfies 
that  for any , , then (1) is equivalent to (2).

Ξ = ×N
n=1 [0, ξn]

k*i ≠ k*j i ≠ j i, j ∈ 𝒩

The lifted set  characterizes tight convex and concave 
envelopes of a function

Ξ

Example

7

∑
i=1

aiξi + b1ξ1ξ2 + b2ξ1ξ2ξ3 + b3ξ1ξ2ξ4 + b4ξ1ξ2ξ4ξ5 + b5ξ1ξ2ξ4ξ6 + b6ξ1ξ2ξ4ξ5ξ7


