
Merlin-Arthur
Classifiers: Formal
Interpretability with
Interactive Black Boxes
DMV 2022
Kartikey Sharma
15th September 2022

1 / 24

mailto:kartikey.sharma@zib.de


Results are joint work with...

Stephan Wäldchen
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1. Introduction

Explainable AI

Motivation
• Neural Networks form a key part of AI
• Outcomes difficult to explain

Consequences
• Existence of hidden biases and vulnerabilities
• Lower trust

Our Contribution
• Intepretable classification system with theoretical guarantees on features.
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1. Introduction

Existing Literature

Heuristic Approaches
• Saliency maps (Mohseni, Zarei, and Ragan 2021), Mechanistic

interpretability (Olah et al. 2018).
• Their success cannot be verified. Can be manipulated by a clever design of the

NN (Slack, Hilgard, Lakkaraju, et al. 2021; Slack, Hilgard, Jia, et al. 2020; Anders
et al. 2020).

Formal Approaches
• Can run into complexity problems, require an exponential amount of

time (Macdonald et al. 2020; Ignatiev, Narodytska, and Marques-Silva 2019).
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1. Introduction

Background

• Task: For x ∈ D, select feature ϕ ∈ Σ.
• ϕ should have high mutual information to the

class c(x) ∈ C
• Can we lower-bound I(c(x); “x contains ϕ”)?
• Problem: Would require model of data

manifold with bound on error
• Idea: Retrain on selected features
• Problem: Cheating!

Feature
Selector:
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1. Introduction

Cheating

“Isle!”“Boat!”

P (C = “boat”|“sea”) = 1

P (C = “isle”|“sea”) = 0

I(C ; “sea”) = 1

P (C = “boat”|“sea”) = 0.5

P (C = “isle”|“sea”) = 0.5

I(C ; “sea”) = 0

Original Images:

Masked Images:
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1. Introduction

Methodology: Merlin-Arthur Classification

• Based on Merlin-Arthur protocols from Interactive Proof Systems
• Cooperative feature selector / Prover (Merlin): M
• Adversarial feature selector / Prover (Morgana): M̂
• Classifier / Verifier (Arthur): A
• Arthur should leverage Merlin but not be misled by Morgana
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1. Introduction

Cheating with Morgana

“Isle!” “Boat!”
“Don’t
know!”

“Don’t
know!”

“Don’t
know!”

“Don’t
know!” “Isle!”“Boat!”
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2. Theoretical Framework

Average Precision

Definition

Completeness: min
l∈{−1,1}

Px∼Dl [A(M(x)) = c(x)] ≥ 1− ϵc ,

Soundness: max
l∈{−1,1}

Px∼Dl

[
A

(
M̂(x)

)
= −c(x)

]
≤ ϵs .

Definition
Given a feature selector M ∈M(D), the average precision of M with respect to the
data distribution D is

QD(M) := Ex∼D[Py∼D[c(y) = c(x)|y ∈ M(x)]]
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2. Theoretical Framework

Performance of Merlin
Classifier: A, Feature Selectors: Merlin M and Morgana M̂

EM,M̂,A :=
{

x ∈ D
∣∣∣ A(M(x)) ̸= c(x) ∨ A

(
M̂(x)

)
= −c(x)

}
,

Theorem (Wäldchen 2022+)

Let M ∈M(D) be a feature selector and let

ϵM = min
A∈A

max
M̂∈M

Px∼D
[
x ∈ EM,M̂,A

]
.

Then there exists a set D′ ⊂ D with Px∼D[x ∈ D′] ≥ 1− ϵM such that for D′ = D|D′

we have
QD′(M) = 1 and thus Hx,y∼D′(c(y) | y ∈ M(x)) = 0.
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2. Theoretical Framework

Average Precision Bound

Theorem (Wäldchen 2022+)

Let D = ((D, σ,D), c, Σ) be a two-class data space with AFC of κ and class imbalance
B. Let A ∈ A, M and M̂ ∈M(D) such that M̂ has a context impact of α with
respect to A, M and D. Then it follows that

QD(M) ≥ 1− ϵc −
ακϵs

1− ϵc + ακϵsB−1 .

Corollary

Ex∼D[Iy∼D(c(y); y ∈ M(x))] ≥ Hy∼D(c(y))− Hb(QD(M)).
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3. Experiments

Experimental Setup

• MNIST Dataset
• Models:

— Merlin and Morgana (Feature Selectors): FW-Classifier and U-Net
— Arthur (Classifier): Convolutional Neural Network

• Training process:
— Alternate between gradients steps for the masks and for the classifier
— Alternate between epochs over masked images and regular images
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3. Experiments

Selected Features

Merlin: Opt, Morgana: Opt Merlin: Net, Morgana: Opt

Key Point: Merlin features which tend to be unique to the class when Morgana is
present.
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3. Experiments

Experimental Results

Merlin: Opt

Merlin: Opt, Morgana: Opt

1.2
1.0
0.8
0.6
0.4
0.2
0.0

Pe

Icoop

H(C(Y )|Y ∈M(X))

1 2 4 8 16 32

1 2 4 8 16 32

k

k

Key Point: Very low error rates even at small pixel sizes for Merlin only. Errors
increase when Morgana is present.
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3. Experiments

Experimental Results

Merlin: Net Merlin: Net, Morgana: Opt
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Pe
Icoop

H(C(Y)|Y M(X))

Pe
Icoop

H(C(Y)|Y M(X))

1 2 4 8 16 32 1 2 4 8 16 32
k k

Key Point: Very low error rates even at small pixel sizes for Merlin only. Errors
increase when Morgana is present.
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Opt Hybrid Net
1.0

0.8

0.6

0.4

0.2

0.0

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

k k k
εs εc QD(M) QD(M)-Bound

Key Point: As mask size increases the bound becomes tighter and the completeness
and soundness increase
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3. Experiments

Conclusion

• We provide an interpretable classification framework inspired by interactive proof
systems.

• We achieve guarantees on the mutual information of the features with the class be
expressing it in terms of measurable criteria such as completeness and soundness.

• We evaluate our results numerically on the MNIST data set. We observe high
quality features which also demonstrate good agreement between our theoretical
bounds and the experimental quality of the exchanged features.
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Thank you for your attention!
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3. Experiments

Training Algorithm
Data: Dataset: D, Epochs: N, γ
Result: Classifier (A), Optional: Masking Networks Merlin (M) and Morgana (M̂)
for i ∈ [N] do

for xj , yj ∈ D do
sM ← M(xj , yj), sM̂ ← M̂(xj , yj) M, M̂ can be optimiser or NN
A← arg minA(1− γ)LM(A(sM · xj), yj) + γLM̂(A(sM̂ · xj), yj) Update
classifier using masked images
M ← arg min LM(A(M(xj) · xj), yj) Update only if M is a NN
M̂ ← arg max LM̂(A(M̂(xj) · xj), yj) Update only if M̂ is a NN

end
end
for xj , yj ∈ D do

A← arg minA L(A(xj), yj)) Update classifier using regular images
end
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